
ESP32 Technical Reference Manual

Espressif Systems

June 9, 2017

About This Manual

The ESP32 Technical Reference Manual is addressed to application developers. The manual provides detailed

and complete information on how to use the ESP32 memory and peripherals.

For pin definition, electrical characteristics and package information, please see the ESP32 Datasheet.

Related Resources

Additional documentation and other resources about ESP32 can be accessed here: ESP32 Resources.

Release Notes

Date Version Release notes

2016.08 V1.0 Initial release.

2016.09 V1.1 Added Chapter I2C Controller.

2016.11 V1.2

Added Chapter PID/MPU/MMU;

Updated Section IO_MUX and GPIO Matrix Register Summary;

Updated Section LED_PWM Register Summary.

2016.12 V1.3

Added Chapter eFuse Controller;

Added Chapter RSA Accelerator;

Added Chapter Random Number Generator;

Updated Section I2C Controller Interrupt and Section I2C Controller Registers.

2017.01 V1.4
Added Chapter SPI;

Added Chapter UART Controllers.

2017.03 V1.5 Added Chapter I2S.

2017.03 V1.6
Added Chapter SD/MMC Host Controller;

Added register IO_MUX_PIN_CTRL in Chapter IO_MUX and GPIO Matrix.

2017.05 V1.7

Added Chapter On-Chip Sensors and Analog Signal Processing;

Added Section Audio PLL;

Updated Section eFuse Controller Register Summary;

Updated Sections I2S PDM and LCD MODE;

Updated Section Communication Format Supported by GP-SPI Slave.

2017.06 V1.8

Added register I2S_STATE_REG in Chapter I2S;

Updated Chapter IO_MUX and GPIO Matrix;

Added Chapter ULP Co-processor.

Documentation Change Notification

Espressif provides email notification to keep customers updated on changes to technical documentation.

To subscribe, please access Espressif Systems’ website, click on the Subscribe button at the top right

corner of the homepage and follow the relevant instructions.

http://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
http://espressif.com/en/products/hardware/esp32/resources
http://espressif.com

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice. THIS DOCUMENT

IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF

MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY

OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to the use of information in this

document, is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property

rights are granted herein. The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth

logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their

respective owners, and are hereby acknowledged.

Copyright © 2017 Espressif Inc. All rights reserved.

Contents

1 System and Memory 17

1.1 Introduction 17

1.2 Features 17

1.3 Functional Description 19

1.3.1 Address Mapping 19

1.3.2 Embedded Memory 19

1.3.2.1 Internal ROM 0 20

1.3.2.2 Internal ROM 1 20

1.3.2.3 Internal SRAM 0 21

1.3.2.4 Internal SRAM 1 21

1.3.2.5 Internal SRAM 2 22

1.3.2.6 DMA 22

1.3.2.7 RTC FAST Memory 22

1.3.2.8 RTC SLOW Memory 22

1.3.3 External Memory 22

1.3.4 Peripherals 23

1.3.4.1 Asymmetric PID Controller Peripheral 24

1.3.4.2 Non-Contiguous Peripheral Memory Ranges 24

1.3.4.3 Memory Speed 25

2 Interrupt Matrix 26

2.1 Introduction 26

2.2 Features 26

2.3 Functional Description 26

2.3.1 Peripheral Interrupt Source 26

2.3.2 CPU Interrupt 30

2.3.3 Allocate Peripheral Interrupt Sources to Peripheral Interrupt on CPU 30

2.3.4 CPU NMI Interrupt Mask 31

2.3.5 Query Current Interrupt Status of Peripheral Interrupt Source 31

3 Reset and Clock 32

3.1 System Reset 32

3.1.1 Introduction 32

3.1.2 Reset Source 32

3.2 System Clock 33

3.2.1 Introduction 33

3.2.2 Clock Source 34

3.2.3 CPU Clock 34

3.2.4 Peripheral Clock 35

3.2.4.1 APB_CLK Source 35

3.2.4.2 REF_TICK Source 36

3.2.4.3 LEDC_SCLK Source 36

3.2.4.4 APLL_SCLK Source 36

3.2.4.5 PLL_D2_CLK Source 36

3.2.4.6 Clock Source Considerations 37

3.2.5 Wi-Fi BT Clock 37

3.2.6 RTC Clock 37

3.2.7 Audio PLL 37

4 IO_MUX and GPIO Matrix 39

4.1 Introduction 39

4.2 Peripheral Input via GPIO Matrix 40

4.2.1 Summary 40

4.2.2 Functional Description 40

4.2.3 Simple GPIO Input 41

4.3 Peripheral Output via GPIO Matrix 41

4.3.1 Summary 41

4.3.2 Functional Description 41

4.3.3 Simple GPIO Output 42

4.4 Direct I/O via IO_MUX 42

4.4.1 Summary 42

4.4.2 Functional Description 42

4.5 RTC IO_MUX for Low Power and Analog I/O 43

4.5.1 Summary 43

4.5.2 Functional Description 43

4.6 Light-sleep Mode Pin Functions 43

4.7 Pad Hold Feature 43

4.8 I/O Pad Power Supply 44

4.8.1 VDD_SDIO Power Domain 44

4.9 Peripheral Signal List 44

4.10 IO_MUX Pad List 49

4.11 RTC_MUX Pin List 50

4.12 Register Summary 51

4.13 Registers 55

5 SPI 76

5.1 Overview 76

5.2 SPI Features 76

5.3 GP-SPI 77

5.3.1 GP-SPI Master Mode 77

5.3.2 GP-SPI Slave Mode 78

5.3.2.1 Communication Format Supported by GP-SPI Slave 78

5.3.2.2 Command Definitions Supported by GP-SPI Slave in Half-duplex Mode 78

5.3.3 GP-SPI Data Buffer 79

5.4 GP-SPI Clock Control 79

5.4.1 GP-SPI Clock Polarity (CPOL) and Clock Phase (CPHA) 80

5.4.2 GP-SPI Timing 80

5.5 Parallel QSPI 81

5.5.1 Communication Format of Parallel QSPI 82

5.6 GP-SPI Interrupt Hardware 82

5.6.1 SPI Interrupts 82

5.6.2 DMA Interrupts 83

5.7 Register Summary 83

5.8 Registers 86

6 SD/MMC Host Controller 108

6.1 Overview 108

6.2 Features 108

6.3 SD/MMC External Interface Signals 108

6.4 Functional Description 109

6.4.1 SD/MMC Host Controller Architecture 109

6.4.1.1 BIU (Bus Interface Unit) 110

6.4.1.2 CIU (Card Interface Unit) 110

6.4.2 Command Path 110

6.4.3 Data Path 111

6.4.3.1 Data Transmit Operation 111

6.4.3.2 Data Receive Operation 112

6.5 Software Restrictions for Proper CIU Operation 112

6.6 RAM for Receiving and Sending Data 113

6.6.1 Transmit RAM Module 113

6.6.2 Receive RAM Module 114

6.7 Descriptor Chain 114

6.8 The Structure of a Linked List 114

6.9 Initialization 116

6.9.1 DMAC Initialization 116

6.9.2 DMAC Transmission Initialization 117

6.9.3 DMAC Reception Initialization 117

6.10 Interrupt 118

6.11 Register Summary 118

6.12 Registers 120

7 I2C Controller 140

7.1 Overview 140

7.2 Features 140

7.3 Functional Description 140

7.3.1 Introduction 140

7.3.2 Architecture 141

7.3.3 I2C Bus Timing 142

7.3.4 I2C cmd Structure 142

7.3.5 I2C Master Writes to Slave 143

7.3.6 I2C Master Reads from Slave 145

7.3.7 Interrupts 147

7.4 Register Summary 148

7.5 Registers 150

8 I2S 161

8.1 Overview 161

8.2 Features 162

8.3 The Clock of I2S Module 163

8.4 I2S Mode 163

8.4.1 Supported Audio Standards 164

8.4.1.1 Philips Standard 164

8.4.1.2 MSB Alignment Standard 164

8.4.1.3 PCM Standard 165

8.4.2 Module Reset 165

8.4.3 FIFO Operation 165

8.4.4 Sending Data 165

8.4.5 Receiving Data 167

8.4.6 I2S Master/Slave Mode 168

8.4.7 I2S PDM 169

8.5 LCD Mode 171

8.5.1 LCD Master Transmitting Mode 171

8.5.2 Camera Slave Receiving Mode 172

8.5.3 ADC/DAC mode 173

8.6 I2S Interrupts 174

8.6.1 FIFO Interrupts 174

8.6.2 DMA Interrupts 174

8.7 Register Summary 174

8.8 Registers 176

9 UART Controllers 193

9.1 Overview 193

9.2 UART Features 193

9.3 Functional Description 193

9.3.1 Introduction 193

9.3.2 UART Architecture 194

9.3.3 UART RAM 195

9.3.4 Baud Rate Detection 195

9.3.5 UART Data Frame 195

9.3.6 Flow Control 196

9.3.6.1 Hardware Flow Control 197

9.3.6.2 Software Flow Control 197

9.3.7 UART DMA 198

9.3.8 UART Interrupts 198

9.3.9 UCHI Interrupts 199

9.4 Register Summary 199

9.5 Registers 202

10 LED_PWM 228

10.1 Introduction 228

10.2 Functional Description 228

10.2.1 Architecture 228

10.2.2 Timers 229

10.2.3 Channels 229

10.2.4 Interrupts 230

10.3 Register Summary 230

10.4 Registers 233

11 Remote Controller Peripheral 243

11.1 Introduction 243

11.2 Functional Description 243

11.2.1 RMT Architecture 243

11.2.2 RMT RAM 244

11.2.3 Clock 244

11.2.4 Transmitter 244

11.2.5 Receiver 245

11.2.6 Interrupts 245

11.3 Register Summary 245

11.4 Registers 247

12 PULSE_CNT 252

12.1 Introduction 252

12.2 Functional Description 252

12.2.1 Architecture 252

12.2.2 Counter Channel Inputs 252

12.2.3 Watchpoints 253

12.2.4 Examples 254

12.2.5 Interrupts 254

12.3 Register Summary 254

12.4 Registers 256

13 64-bit Timers 260

13.1 Introduction 260

13.2 Functional Description 260

13.2.1 16-bit Prescaler 260

13.2.2 64-bit Time-base Counter 260

13.2.3 Alarm Generation 261

13.2.4 MWDT 261

13.2.5 Interrupts 261

13.3 Register Summary 261

13.4 Registers 263

14 Watchdog Timers 270

14.1 Introduction 270

14.2 Features 270

14.3 Functional Description 270

14.3.1 Clock 270

14.3.1.1 Operating Procedure 271

14.3.1.2 Write Protection 271

14.3.1.3 Flash Boot Protection 271

14.3.1.4 Registers 272

15 eFuse Controller 273

15.1 Introduction 273

15.2 Features 273

15.3 Functional Description 273

15.3.1 Structure 273

15.3.1.1 System Parameter efuse_wr_disable 274

15.3.1.2 System Parameter efuse_rd_disable 275

15.3.1.3 System Parameter coding_scheme 275

15.3.2 Programming of System Parameters 276

15.3.3 Software Reading of System Parameters 279

15.3.4 The Use of System Parameters by Hardware Modules 280

15.3.5 Interrupts 280

15.4 Register Summary 280

15.5 Registers 283

16 AES Accelerator 293

16.1 Introduction 293

16.2 Features 293

16.3 Functional Description 293

16.3.1 AES Algorithm Operations 293

16.3.2 Key, Plaintext and Ciphertext 293

16.3.3 Endianness 294

16.3.4 Encryption and Decryption Operations 296

16.3.5 Speed 296

16.4 Register Summary 296

16.5 Registers 298

17 SHA Accelerator 300

17.1 Introduction 300

17.2 Features 300

17.3 Functional Description 300

17.3.1 Padding and Parsing the Message 300

17.3.2 Message Digest 300

17.3.3 Hash Operation 301

17.3.4 Speed 301

17.4 Register Summary 301

17.5 Registers 303

18 RSA Accelerator 308

18.1 Introduction 308

18.2 Features 308

18.3 Functional Description 308

18.3.1 Initialization 308

18.3.2 Large Number Modular Exponentiation 308

18.3.3 Large Number Modular Multiplication 310

18.3.4 Large Number Multiplication 310

18.4 Register Summary 311

18.5 Registers 312

19 Random Number Generator 314

19.1 Introduction 314

19.2 Feature 314

19.3 Functional Description 314

19.4 Register Summary 314

19.5 Register 314

20 PID/MPU/MMU 315

20.1 Introduction 315

20.2 Features 315

20.3 Functional Description 315

20.3.1 PID Controller 315

20.3.2 MPU/MMU 316

20.3.2.1 Embedded Memory 316

20.3.2.2 External Memory 322

20.3.2.3 Peripheral 328

21 On-Chip Sensors and Analog Signal Processing 330

21.1 Introduction 330

21.2 Capacitive Touch Sensor 330

21.2.1 Introduction 330

21.2.2 Features 330

21.2.3 Available GPIOs 331

21.2.4 Functional Description 331

21.2.5 Touch FSM 332

21.3 SAR ADC 333

21.3.1 Introduction 333

21.3.2 Features 334

21.3.3 Outline of Function 334

21.3.4 RTC SAR ADC Controllers 335

21.3.5 DIG SAR ADC Controllers 336

21.4 Low-Noise Amplifier 338

21.4.1 Introduction 338

21.4.2 Features 338

21.4.3 Overview of Function 338

21.5 Hall Sensor 339

21.5.1 Introduction 339

21.5.2 Features 340

21.5.3 Functional Description 340

21.6 Temperature Sensor 340

21.6.1 Introduction 340

21.6.2 Features 341

21.6.3 Functional Description 341

21.7 DAC 341

21.7.1 Introduction 341

21.7.2 Features 341

21.7.3 Structure 342

21.7.4 Cosine Waveform Generator 342

21.7.5 DMA support 343

21.8 Register Summary 343

21.8.1 Sensors 343

21.8.2 Advanced Peripheral Bus 344

21.8.3 RTC I/O 344

21.9 Registers 345

21.9.1 Sensors 345

21.9.2 Advanced Peripheral Bus 356

21.9.3 RTC I/O 359

22 ULP Co-processor 360

22.1 Introduction 360

22.2 Features 360

22.3 Functional Description 361

22.4 Instruction Set 361

22.4.1 ALU - Perform Arithmetic/Logic Operations 362

22.4.1.1 Operations among Registers 362

22.4.1.2 Operations with Immediate Value 363

22.4.1.3 Operations with Stage Count Register 363

22.4.2 ST – Store Data in Memory 364

22.4.3 LD – Load Data from Memory 364

22.4.4 JUMP – Jump to an Absolute Address 365

22.4.5 JUMPR – Jump to a Relative Offset (Conditional upon R0) 365

22.4.6 JUMPS – Jump to a Relative Address (Conditional upon Stage Count Register) 366

22.4.7 HALT – End the Program 366

22.4.8 WAKE – Wake up the Chip 367

22.4.9 Sleep – Set the ULP Timer’s Wake-up Period 367

22.4.10 WAIT – Wait for a Number of Cycles 367

22.4.11 TSENS – Take Measurements with the Temperature Sensor 367

22.4.12 ADC – Take Measurement with ADC 368

22.4.13 I2C_RD/I2C_WR – Read/Write I2C 369

22.4.14 REG_RD – Read from Peripheral Register 369

22.4.15 REG_WR – Write to Peripheral Register 370

22.5 ULP Program Execution 370

22.6 RTC_I2C Controller 372

22.6.1 Configuring RTC_I2C 372

22.6.2 Using RTC_I2C 372

22.6.2.1 I2C_RD - Read a Single Byte 373

22.6.2.2 I2C_WR - Write a Single Byte 373

22.6.2.3 Detecting Error Conditions 374

22.6.2.4 Connecting I2C Signals 374

22.7 Register Summary 374

22.7.1 SENS_ULP Address Space 374

22.7.2 RTC_I2C Address Space 374

22.8 Registers 376

22.8.1 SENS_ULP Address Space 376

22.8.2 RTC_I2C Address Space 378

List of Tables
1 Address Mapping 19

2 Embedded Memory Address Mapping 20

3 Module with DMA 22

4 External Memory Address Mapping 23

5 Peripheral Address Mapping 23

6 PRO_CPU, APP_CPU Interrupt Configuration 28

7 CPU Interrupts 30

8 PRO_CPU and APP_CPU Reset Reason Values 32

9 CPU_CLK Source 34

10 CPU_CLK Derivation 35

11 Peripheral Clock Usage 35

12 APB_CLK Derivation 36

13 REF_TICK Derivation 36

14 LEDC_SCLK Derivation 36

15 IO_MUX Light-sleep Pin Function Registers 43

16 GPIO Matrix Peripheral Signals 45

17 IO_MUX Pad Summary 49

18 RTC_MUX Pin Summary 50

22 SPI Signal and Pin Signal Function Mapping 76

23 Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Master 80

24 Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Slave 80

26 SD/MMC Signal Description 109

27 DES0 115

28 DES1 116

29 DES2 116

30 DES3 116

33 I2S Signal Bus Description 162

34 Register Configuration 166

35 Send Channel Mode 166

36 Modes of Writing Received Data into FIFO and the Corresponding Register Configuration 168

37 The Register Configuration to Which the Four Modes Correspond 168

38 Upsampling Rate Configuration 169

39 Down-sampling Configuration 171

48 System Parameter 273

49 BLOCK1/2/3 Encoding 275

50 Program Register 276

51 Timing Configuration 278

52 Software Read Register 279

54 Operation Mode 293

55 AES Text Endianness 294

56 AES-128 Key Endianness 295

57 AES-192 Key Endianness 295

58 AES-256 Key Endianness 295

63 MPU and MMU Structure for Internal Memory 316

64 MPU for RTC FAST Memory 317

65 MPU for RTC SLOW Memory 317

66 Page Mode of MMU for the Remaining 128 KB of Internal SRAM0 and SRAM2 318

67 Page Boundaries for SRAM0 MMU 319

68 Page Boundaries for SRAM2 MMU 319

69 DPORT_DMMU_TABLEn_REG & DPORT_IMMU_TABLEn_REG 320

70 MPU for DMA 321

71 Virtual Address for External Memory 323

72 MMU Entry Numbers for PRO_CPU 323

73 MMU Entry Numbers for APP_CPU 323

74 MMU Entry Numbers for PRO_CPU (Special Mode) 324

75 MMU Entry Numbers for APP_CPU (Special Mode) 324

76 Virtual Address Mode for External SRAM 325

77 Virtual Address for External SRAM (Normal Mode) 326

78 Virtual Address for External SRAM (Low-High Mode) 326

79 Virtual Address for External SRAM (Even-Odd Mode) 326

80 MMU Entry Numbers for External RAM 327

81 MPU for Peripheral 328

82 DPORT_AHBLITE_MPU_TABLE_X_REG 329

83 ESP32 Capacitive Sensing Touch Pads 331

84 Inputs of SAR ADC module 334

85 ESP32 SAR ADC Controllers 335

86 Fields of the Pattern Table Register 337

87 Fields of Type I DMA Data Format 338

88 Fields of Type II DMA Data Format 338

91 ALU Operations among Registers 362

92 ALU Operations with Immediate Value 363

93 ALU Operations with Stage Count Register 364

94 Input Signals Measured using the ADC Instruction 368

List of Figures
1 System Structure 18

2 System Address Mapping 18

3 Interrupt Matrix Structure 26

4 System Reset 32

5 System Clock 33

6 IO_MUX, RTC IO_MUX and GPIO Matrix Overview 39

7 Peripheral Input via IO_MUX, GPIO Matrix 40

8 Output via GPIO Matrix 42

9 ESP32 I/O Pad Power Sources 44

10 SPI Architecture 76

11 SPI Master and Slave Full-duplex Communication 77

12 SPI Data Buffer 79

13 Parallel QSPI 81

14 Communication Format of Parallel QSPI 82

15 SD/MMC Controller Topology 108

16 SD/MMC Controller External Interface Signals 109

17 SDIO Host Block Diagram 109

18 Command Path State Machine 111

19 Data Transmit State Machine 111

20 Data Receive State Machine 112

21 Descriptor Chain 114

22 The Structure of a Linked List 114

23 I2C Master Architecture 141

24 I2C Slave Architecture 141

25 I2C Sequence Chart 142

26 Structure of The I2C Command Register 142

27 I2C Master Writes to Slave with 7-bit Address 143

28 I2C Master Writes to Slave with 10-bit Address 144

29 I2C Master Writes to addrM in RAM of Slave with 7-bit Address 144

30 I2C Master Writes to Slave with 7-bit Address in Two Segments 145

31 I2C Master Reads from Slave with 7-bit Address 145

32 I2C Master Reads from Slave with 10-bit Address 146

33 I2C Master Reads N Bytes of Data from addrM in Slave with 7-bit Address 146

34 I2C Master Reads from Slave with 7-bit Address in Two Segments 147

35 I2S System Block Diagram 161

36 I2S Clock 163

37 Philips Standard 164

38 MSB Alignment Standard 164

39 PCM Standard 165

40 Tx FIFO Data Mode 166

41 The First Stage of Receiving Data 167

42 Modes of Writing Received Data into FIFO 168

43 PDM Transmitting Module 169

44 PDM Sends Signal 170

45 PDM Receives Signal 170

46 PDM Receive Module 170

47 LCD Master Transmitting Mode 171

48 LCD Master Transmitting Data Frame, Form 1 171

49 LCD Master Transmitting Data Frame, Form 2 172

50 Camera Slave Receiving Mode 172

51 ADC Interface of I2S0 173

52 DAC Interface of I2S 173

53 Data Input by I2S DAC Interface 173

54 UART Basic Structure 194

55 UART shared RAM 195

56 UART Data Frame Structure 196

57 AT_CMD Character Format 196

58 Hardware Flow Control 197

59 LED_PWM Architecture 228

60 LED_PWM High-speed Channel Diagram 228

61 LED PWM Output Signal Diagram 229

62 Output Signal Diagram of Gradient Duty Cycle 230

63 RMT Architecture 243

64 Data Structure 244

65 PULSE_CNT Architecture 252

66 PULSE_CNT Upcounting Diagram 254

67 PULSE_CNT Downcounting Diagram 254

68 MMU Access Example 318

69 Touch Sensor 330

70 Touch Sensor Structure 331

71 Touch Sensor Operating Flow 332

72 Touch FSM Structure 333

73 SAR ADC Depiction 333

74 SAR ADC Outline of Function 334

75 RTC SAR ADC Outline of Function 336

76 Diagram of DIG SAR ADC Controllers 337

77 Structure of Low-Noise Amplifier 338

78 Low-Noise Amplifier – Sequence of Operation 339

79 Hall Sensor 340

80 Temperature Sensor 341

81 Diagram of DAC function 342

82 Cosine Waveform (CW) Generator 343

83 ULP Co-processor Diagram 360

84 The ULP Co-processor Instruction Format 361

85 Instruction Type — ALU for Operations among Registers 362

86 Instruction Type — ALU for Operations with Immediate Value 363

87 Instruction Type — ALU for Operations with Stage Count Register 363

88 Instruction Type — ST 364

89 Instruction Type — LD 364

90 Instruction Type — JUMP 365

91 Instruction Type — JUMPR 365

92 Instruction Type — JUMP 366

93 Instruction Type — HALT 366

94 Instruction Type — WAKE 367

95 Instruction Type — SLEEP 367

96 Instruction Type — WAIT 367

97 Instruction Type — TSENS 367

98 Instruction Type — ADC 368

99 Instruction Type — I2C 369

100 Instruction Type — REG_RD 369

101 Instruction Type — REG_WR 370

102 Control of ULP Program Execution 371

103 Sample of a ULP Operation Sequence 372

104 I2C Read Operation 373

105 I2C Write Operation 374

1. SYSTEM AND MEMORY

1. System and Memory

1.1 Introduction

The ESP32 is a dual-core system with two Harvard Architecture Xtensa LX6 CPUs. All embedded memory,

external memory and peripherals are located on the data bus and/or the instruction bus of these CPUs.

With some minor exceptions (see below), the address mapping of two CPUs is symmetric, meaning that they use

the same addresses to access the same memory. Multiple peripherals in the system can access embedded

memory via DMA.

The two CPUs are named “PRO_CPU” and “APP_CPU” (for “protocol” and “application”), however, for most

purposes the two CPUs are interchangeable.

1.2 Features

• Address Space

– Symmetric address mapping

– 4 GB (32-bit) address space for both data bus and instruction bus

– 1296 KB embedded memory address space

– 19704 KB external memory address space

– 512 KB peripheral address space

– Some embedded and external memory regions can be accessed by either data bus or instruction bus

– 328 KB DMA address space

• Embedded Memory

– 448 KB Internal ROM

– 520 KB Internal SRAM

– 8 KB RTC FAST Memory

– 8 KB RTC SLOW Memory

• External Memory

Off-chip SPI memory can be mapped into the available address space as external memory. Parts of the

embedded memory can be used as transparent cache for this external memory.

– Supports up to 16 MB off-Chip SPI Flash.

– Supports up to 8 MB off-Chip SPI SRAM.

• Peripherals

– 41 peripherals

• DMA

– 13 modules are capable of DMA operation

Espressif Systems 17 ESP32 Technical Reference Manual V1.8

1. SYSTEM AND MEMORY

The block diagram in Figure 1 illustrates the system structure, and the block diagram in Figure 2 illustrates the

address map structure.

Figure 1: System Structure

Figure 2: System Address Mapping

Espressif Systems 18 ESP32 Technical Reference Manual V1.8

1. SYSTEM AND MEMORY

1.3 Functional Description

1.3.1 Address Mapping

Each of the two Harvard Architecture Xtensa LX6 CPUs has 4 GB (32-bit) address space. Address spaces are

symmetric between the two CPUs.

Addresses below 0x4000_0000 are serviced using the data bus. Addresses in the range 0x4000_0000 ~
0x4FFF_FFFF are serviced using the instruction bus. Finally, addresses over and including 0x5000_0000 are

shared by the data and instruction bus.

The data bus and instruction bus are both little-endian: for example, byte addresses 0x0, 0x1, 0x2, 0x3 access

the least significant, second least significant, second most significant, and the most significant bytes of the 32-bit

word stored at the 0x0 address, respectively. The CPU can access data bus addresses via aligned or non-aligned

byte, half-word and word read-and-write operations. The CPU can read and write data through the instruction

bus, but only in a word aligned manner; non-word-aligned access will cause a CPU exception.

Each CPU can directly access embedded memory through both the data bus and the instruction bus, external

memory which is mapped into the address space (via transparent caching & MMU), and peripherals. Table 1

illustrates address ranges that can be accessed by each CPU’s data bus and instruction bus.

Some embedded memories and some external memories can be accessed via the data bus or the instruction

bus. In these cases, the same memory is available to either of the CPUs at two address ranges.

Table 1: Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target

0x0000_0000 0x3F3F_FFFF Reserved

Data 0x3F40_0000 0x3F7F_FFFF 4 MB External Memory

Data 0x3F80_0000 0x3FBF_FFFF 4 MB External Memory

0x3FC0_0000 0x3FEF_FFFF 3 MB Reserved

Data 0x3FF0_0000 0x3FF7_FFFF 512 KB Peripheral

Data 0x3FF8_0000 0x3FFF_FFFF 512 KB Embedded Memory

Instruction 0x4000_0000 0x400C_1FFF 776 KB Embedded Memory

Instruction 0x400C_2000 0x40BF_FFFF 11512 KB External Memory

0x40C0_0000 0x4FFF_FFFF 244 MB Reserved

Data Instruction 0x5000_0000 0x5000_1FFF 8 KB Embedded Memory

0x5000_2000 0xFFFF_FFFF Reserved

1.3.2 Embedded Memory

The Embedded Memory consists of four segments: internal ROM (448 KB), internal SRAM (520 KB), RTC FAST

memory (8 KB) and RTC SLOW memory (8 KB).

The 448 KB internal ROM is divided into two parts: Internal ROM 0 (384 KB) and Internal ROM 1 (64 KB).

The 520 KB internal SRAM is divided into three parts: Internal SRAM 0 (192 KB), Internal SRAM 1 (128 KB), and

Internal SRAM 2 (200 KB).

RTC FAST Memory and RTC SLOW Memory are both implemented as SRAM.

Table 2 lists all embedded memories and their address ranges on the data and instruction buses.

Espressif Systems 19 ESP32 Technical Reference Manual V1.8

1. SYSTEM AND MEMORY

Table 2: Embedded Memory Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

Data 0x3FF8_0000 0x3FF8_1FFF 8 KB RTC FAST Memory PRO_CPU Only

0x3FF8_2000 0x3FF8_FFFF 56 KB Reserved -

Data 0x3FF9_0000 0x3FF9_FFFF 64 KB Internal ROM 1 -

0x3FFA_0000 0x3FFA_DFFF 56 KB Reserved -

Data 0x3FFA_E000 0x3FFD_FFFF 200 KB Internal SRAM 2 DMA

Data 0x3FFE_0000 0x3FFF_FFFF 128 KB Internal SRAM 1 DMA

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

Instruction 0x4000_0000 0x4000_7FFF 32 KB Internal ROM 0 Remap

Instruction 0x4000_8000 0x4005_FFFF 352 KB Internal ROM 0 -

0x4006_0000 0x4006_FFFF 64 KB Reserved -

Instruction 0x4007_0000 0x4007_FFFF 64 KB Internal SRAM 0 Cache

Instruction 0x4008_0000 0x4009_FFFF 128 KB Internal SRAM 0 -

Instruction 0x400A_0000 0x400A_FFFF 64 KB Internal SRAM 1 -

Instruction 0x400B_0000 0x400B_7FFF 32 KB Internal SRAM 1 Remap

Instruction 0x400B_8000 0x400B_FFFF 32 KB Internal SRAM 1 -

Instruction 0x400C_0000 0x400C_1FFF 8 KB RTC FAST Memory PRO_CPU Only

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

Data Instruc-

tion
0x5000_0000 0x5000_1FFF 8 KB RTC SLOW Memory -

1.3.2.1 Internal ROM 0

The capacity of Internal ROM 0 is 384 KB. It is accessible by both CPUs through the address range

0x4000_0000 ~ 0x4005_FFFF, which is on the instruction bus.

The address range of the first 32 KB of the ROM 0 (0x4000_0000 ~ 0x4000_7FFF) can be remapped in order to

access a part of Internal SRAM 1 that normally resides in a memory range of 0x400B_0000 ~ 0x400B_7FFF.

While remapping, the 32 KB SRAM cannot be accessed by an address range of 0x400B_0000 ~ 0x400B_7FFF

any more, but it can still be accessible through the data bus (0x3FFE_8000 ~ 0x3FFE_FFFF). This can be done

on a per-CPU basis: setting bit 0 of register DPORT_PRO_BOOT_REMAP_CTRL_REG or

DPORT_APP_BOOT_REMAP_CTRL_REG will remap SRAM for the PRO_CPU and APP_CPU,

respectively.

1.3.2.2 Internal ROM 1

The capacity of Internal ROM 1 is 64 KB. It can be read by either CPU at an address range 0x3FF9_0000 ~
0x3FF9_FFFF of the data bus.

Espressif Systems 20 ESP32 Technical Reference Manual V1.8

1. SYSTEM AND MEMORY

1.3.2.3 Internal SRAM 0

The capacity of Internal SRAM 0 is 192 KB. Hardware can be configured to use the first 64KB to cache external

memory access. When not used as cache, the first 64KB can be read and written by either CPU at addresses

0x4007_0000 ~ 0x4007_7FFF of the instruction bus. The remaining 128 KB can always be read and written by

either CPU at addresses 0x4007_8000 ~ 0x4007_FFFF of instruction bus.

1.3.2.4 Internal SRAM 1

The capacity of Internal SRAM 1 is 128 KB. Either CPU can read and write this memory at addresses

0x3FFE_0000 ~ 0x3FFF_FFFF of the data bus, and also at addresses 0x400A_0000 ~ 0x400B_FFFF of the

instruction bus.

The address range accessed via the instruction bus is in reverse order (word-wise) compared to access via the

data bus. That is to say, address

0x3FFE_0000 and 0x400B_FFFC access the same word

0x3FFE_0004 and 0x400B_FFF8 access the same word

0x3FFE_0008 and 0x400B_FFF4 access the same word

……

0x3FFF_FFF4 and 0x400A_0008 access the same word

0x3FFF_FFF8 and 0x400A_0004 access the same word

0x3FFF_FFFC and 0x400A_0000 access the same word

The data bus and instruction bus of the CPU are still both little-endian, so the byte order of individual words is not

reversed between address spaces. For example, address

0x3FFE_0000 accesses the least significant byte in the word accessed by 0x400B_FFFC.

0x3FFE_0001 accesses the second least significant byte in the word accessed by 0x400B_FFFC.

0x3FFE_0002 accesses the second most significant byte in the word accessed by 0x400B_FFFC.

0x3FFE_0003 accesses the most significant byte in the word accessed by 0x400B_FFFC.

0x3FFE_0004 accesses the least significant byte in the word accessed by 0x400B_FFF8.

0x3FFE_0005 accesses the second least significant byte in the word accessed by 0x400B_FFF8.

0x3FFE_0006 accesses the second most significant byte in the word accessed by 0x400B_FFF8.

0x3FFE_0007 accesses the most significant byte in the word accessed by 0x400B_FFF8.

……

0x3FFF_FFF8 accesses the least significant byte in the word accessed by 0x400A_0004.

0x3FFF_FFF9 accesses the second least significant byte in the word accessed by 0x400A_0004.

0x3FFF_FFFA accesses the second most significant byte in the word accessed by 0x400A_0004.

0x3FFF_FFFB accesses the most significant byte in the word accessed by 0x400A_0004.

0x3FFF_FFFC accesses the least significant byte in the word accessed by 0x400A_0000.

0x3FFF_FFFD accesses the second most significant byte in the word accessed by 0x400A_0000.

0x3FFF_FFFE accesses the second most significant byte in the word accessed by 0x400A_0000.

0x3FFF_FFFF accesses the most significant byte in the word accessed by 0x400A_0000.

Part of this memory can be remapped onto the ROM 0 address space. See Internal Rom 0 for more

information.

Espressif Systems 21 ESP32 Technical Reference Manual V1.8

1. SYSTEM AND MEMORY

1.3.2.5 Internal SRAM 2

The capacity of Internal SRAM 2 is 200 KB. It can be read and written by either CPU at addresses 0x3FFA_E000

~ 0x3FFD_FFFF on the data bus.

1.3.2.6 DMA

DMA uses the same addressing as the CPU data bus to read and write Internal SRAM 1 and Internal SRAM 2.

This means DMA uses an address range of 0x3FFE_0000 ~ 0x3FFF_FFFF to read and write Internal SRAM 1 and

an address range of 0x3FFA_E000 ~ 0x3FFD_FFFF to read and write Internal SRAM 2.

In the ESP32, 13 peripherals are equipped with DMA. Table 3 lists these peripherals.

Table 3: Module with DMA

UART0 UART1 UART2

SPI1 SPI2 SPI3

I2S0 I2S1

SDIO Slave SDMMC

EMAC

BT WIFI

1.3.2.7 RTC FAST Memory

RTC FAST Memory is 8 KB of SRAM. It can be read and written by PRO_CPU only at an address range of

0x3FF8_0000 ~ 0x3FF8_1FFF on the data bus or at an address range of 0x400C_0000 ~ 0x400C_1FFF on the

instruction bus. Unlike most other memory regions, RTC FAST memory cannot be accessed by the

APP_CPU.

The two address ranges of PRO_CPU access RTC FAST Memory in the same order, so, for example, addresses

0x3FF8_0000 and 0x400C_0000 access the same word. On the APP_CPU, these address ranges do not

provide access to RTC FAST Memory or any other memory location.

1.3.2.8 RTC SLOW Memory

RTC SLOW Memory is 8 KB of SRAM which can be read and written by either CPU at an address range of

0x5000_0000 ~ 0x5000_1FFF. This address range is shared by both the data bus and the instruction bus.

1.3.3 External Memory

The ESP32 can access external SPI flash and SPI SRAM as external memory. Table 4 provides a list of external

memories that can be accessed by either CPU at a range of addresses on the data and instruction buses. When

a CPU accesses external memory through the Cache and MMU, the cache will map the CPU’s address to an

external physical memory address (in the external memory’s address space), according to the MMU settings. Due

to this address mapping, the ESP32 can address up to 16 MB External Flash and 8 MB External SRAM.

Espressif Systems 22 ESP32 Technical Reference Manual V1.8

1. SYSTEM AND MEMORY

Table 4: External Memory Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

Data 0x3F40_0000 0x3F7F_FFFF 4 MB External Flash Read

Data 0x3F80_0000 0x3FBF_FFFF 4 MB External SRAM Read and Write

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

Instruction 0x400C_2000 0x40BF_FFFF 11512 KB External Flash Read

1.3.4 Peripherals

The ESP32 has 41 peripherals. Table 5 specifically describes the peripherals and their respective address

ranges. Nearly all peripheral modules can be accessed by either CPU at the same address with just a single

exception; this being the PID Controller.

Table 5: Peripheral Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

Data 0x3FF0_0000 0x3FF0_0FFF 4 KB DPort Register

Data 0x3FF0_1000 0x3FF0_1FFF 4 KB AES Accelerator

Data 0x3FF0_2000 0x3FF0_2FFF 4 KB RSA Accelerator

Data 0x3FF0_3000 0x3FF0_3FFF 4 KB SHA Accelerator

Data 0x3FF0_4000 0x3FF0_4FFF 4 KB Secure Boot

0x3FF0_5000 0x3FF0_FFFF 44 KB Reserved

Data 0x3FF1_0000 0x3FF1_3FFF 16 KB Cache MMU Table

0x3FF1_4000 0x3FF1_EFFF 44 KB Reserved

Data 0x3FF1_F000 0x3FF1_FFFF 4 KB PID Controller Per-CPU peripheral

0x3FF2_0000 0x3FF3_FFFF 128 KB Reserved

Data 0x3FF4_0000 0x3FF4_0FFF 4 KB UART0

0x3FF4_1000 0x3FF4_1FFF 4 KB Reserved

Data 0x3FF4_2000 0x3FF4_2FFF 4 KB SPI1

Data 0x3FF4_3000 0x3FF4_3FFF 4 KB SPI0

Data 0x3FF4_4000 0x3FF4_4FFF 4 KB GPIO

0x3FF4_5000 0x3FF4_7FFF 12 KB Reserved

Data 0x3FF4_8000 0x3FF4_8FFF 4 KB RTC

Data 0x3FF4_9000 0x3FF4_9FFF 4 KB IO MUX

0x3FF4_A000 0x3FF4_AFFF 4 KB Reserved

Data 0x3FF4_B000 0x3FF4_BFFF 4 KB SDIO Slave One of three parts

Data 0x3FF4_C000 0x3FF4_CFFF 4 KB UDMA1

0x3FF4_D000 0x3FF4_EFFF 8 KB Reserved

Data 0x3FF4_F000 0x3FF4_FFFF 4 KB I2S0

Data 0x3FF5_0000 0x3FF5_0FFF 4 KB UART1

0x3FF5_1000 0x3FF5_2FFF 8 KB Reserved

Data 0x3FF5_3000 0x3FF5_3FFF 4 KB I2C0

Data 0x3FF5_4000 0x3FF5_4FFF 4 KB UDMA0

Espressif Systems 23 ESP32 Technical Reference Manual V1.8

1. SYSTEM AND MEMORY

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

Data 0x3FF5_5000 0x3FF5_5FFF 4 KB SDIO Slave One of three parts

Data 0x3FF5_6000 0x3FF5_6FFF 4 KB RMT

Data 0x3FF5_7000 0x3FF5_7FFF 4 KB PCNT

Data 0x3FF5_8000 0x3FF5_8FFF 4 KB SDIO Slave One of three parts

Data 0x3FF5_9000 0x3FF5_9FFF 4 KB LED PWM

Data 0x3FF5_A000 0x3FF5_AFFF 4 KB Efuse Controller

Data 0x3FF5_B000 0x3FF5_BFFF 4 KB Flash Encryption

0x3FF5_C000 0x3FF5_DFFF 8 KB Reserved

Data 0x3FF5_E000 0x3FF5_EFFF 4 KB PWM0

Data 0x3FF5_F000 0x3FF5_FFFF 4 KB TIMG0

Data 0x3FF6_0000 0x3FF6_0FFF 4 KB TIMG1

0x3FF6_1000 0x3FF6_3FFF 12 KB Reserved

Data 0x3FF6_4000 0x3FF6_4FFF 4 KB SPI2

Data 0x3FF6_5000 0x3FF6_5FFF 4 KB SPI3

Data 0x3FF6_6000 0x3FF6_6FFF 4 KB SYSCON

Data 0x3FF6_7000 0x3FF6_7FFF 4 KB I2C1

Data 0x3FF6_8000 0x3FF6_8FFF 4 KB SDMMC

Data 0x3FF6_9000 0x3FF6_AFFF 8 KB EMAC

0x3FF6_B000 0x3FF6_BFFF 4 KB Reserved

Data 0x3FF6_C000 0x3FF6_CFFF 4 KB PWM1

Data 0x3FF6_D000 0x3FF6_DFFF 4 KB I2S1

Data 0x3FF6_E000 0x3FF6_EFFF 4 KB UART2

Data 0x3FF6_F000 0x3FF6_FFFF 4 KB PWM2

Data 0x3FF7_0000 0x3FF7_0FFF 4 KB PWM3

0x3FF7_1000 0x3FF7_4FFF 16 KB Reserved

Data 0x3FF7_5000 0x3FF7_5FFF 4 KB RNG

0x3FF7_6000 0x3FF7_FFFF 40 KB Reserved

1.3.4.1 Asymmetric PID Controller Peripheral

There are two PID Controllers in the system. They serve the PRO_CPU and the APP_CPU, respectively. The

PRO_CPU and the APP_CPU can only access their own PID Controller and not that of their counterpart.

Each CPU uses the same memory range 0x3FF1_F000 ~ 3FF1_FFFF to access its own PID Controller.

1.3.4.2 Non-Contiguous Peripheral Memory Ranges

The SDIO Slave peripheral consists of three parts and the two CPUs use non-contiguous addresses to access

these. The three parts are accessed at the address ranges 0x3FF4_B000 ~ 3FF4_BFFF, 0x3FF5_5000 ~
3FF5_5FFF and 0x3FF5_8000 ~ 3FF5_8FFF of each CPU’s data bus. Similarly to other peripherals, access to

this peripheral is identical for both CPUs.

Espressif Systems 24 ESP32 Technical Reference Manual V1.8

1. SYSTEM AND MEMORY

1.3.4.3 Memory Speed

The ROM as well as the SRAM are both clocked from CPU_CLK and can be accessed by the CPU in a single

cycle. The RTC FAST memory is clocked from the APB_CLOCK and the RTC SLOW memory from the

FAST_CLOCK, so access to these memories may be slower. DMA uses the APB_CLK to access memory.

Internally, the SRAM is organized in 32K-sized banks. Each CPU and DMA channel can simultaneously access

the SRAM at full speed, provided they access addresses in different memory banks.

Espressif Systems 25 ESP32 Technical Reference Manual V1.8

2. INTERRUPT MATRIX

2. Interrupt Matrix

2.1 Introduction

The Interrupt Matrix embedded in the ESP32 independently allocates peripheral interrupt sources to the two

CPUs’ peripheral interrupts. This configuration is made to be highly flexible in order to meet many different

needs.

2.2 Features

• Accepts 71 peripheral interrupt sources as input.

• Generates 26 peripheral interrupt sources per CPU as output (52 total).

• CPU NMI Interrupt Mask.

• Queries current interrupt status of peripheral interrupt sources.

The structure of the Interrupt Matrix is shown in Figure 3.

Figure 3: Interrupt Matrix Structure

2.3 Functional Description

2.3.1 Peripheral Interrupt Source

ESP32 has 71 peripheral interrupt sources in total. All peripheral interrupt sources are listed in table 6. 67 of 71

ESP32 peripheral interrupt sources can be allocated to either CPU.

The four remaining peripheral interrupt sources are CPU-specific, two per CPU. GPIO_INTERRUPT_PRO and

GPIO_INTERRUPT_PRO_NMI can only be allocated to PRO_CPU. GPIO_INTERRUPT_APP and

Espressif Systems 26 ESP32 Technical Reference Manual V1.8

2. INTERRUPT MATRIX

GPIO_INTERRUPT_APP_NMI can only be allocated to APP_CPU. As a result, PRO_CPU and APP_CPU each

have 69 peripheral interrupt sources.

Espressif Systems 27 ESP32 Technical Reference Manual V1.8

2.
IN
TER

R
U
P
T
M
A
TR

IX

Table 6: PRO_CPU, APP_CPU Interrupt Configuration

PRO_CPU APP_CPU

Peripheral Interrupt Source

Status Register Status Register
Peripheral Interrupt

Configuration Register
Bit Name

No. Name No.
Name Bit

Peripheral Interrupt

Configuration Register

PRO_MAC_INTR_MAP_REG 0

PRO_INTR_STATUS_REG_0

0 MAC_INTR 0

APP_INTR_STATUS_REG_0

0 APP_MAC_INTR_MAP_REG

PRO_MAC_NMI_MAP_REG 1 1 MAC_NMI 1 1 APP_MAC_NMI_MAP_REG

PRO_BB_INT_MAP_REG 2 2 BB_INT 2 2 APP_BB_INT_MAP_REG

PRO_BT_MAC_INT_MAP_REG 3 3 BT_MAC_INT 3 3 APP_BT_MAC_INT_MAP_REG

PRO_BT_BB_INT_MAP_REG 4 4 BT_BB_INT 4 4 APP_BT_BB_INT_MAP_REG

PRO_BT_BB_NMI_MAP_REG 5 5 BT_BB_NMI 5 5 APP_BT_BB_NMI_MAP_REG

PRO_RWBT_IRQ_MAP_REG 6 6 RWBT_IRQ 6 6 APP_RWBT_IRQ_MAP_REG

PRO_BT_BB_NMI_MAP_REG 5 5 BT_BB_NMI 5 5 APP_BT_BB_NMI_MAP_REG

PRO_RWBT_IRQ_MAP_REG 6 6 RWBT_IRQ 6 6 APP_RWBT_IRQ_MAP_REG

PRO_RWBLE_IRQ_MAP_REG 7 7 RWBLE_IRQ 7 7 APP_RWBLE_IRQ_MAP_REG

PRO_RWBT_NMI_MAP_REG 8 8 RWBT_NMI 8 8 APP_RWBT_NMI_MAP_REG

PRO_RWBLE_NMI_MAP_REG 9 9 RWBLE_NMI 9 9 APP_RWBLE_NMI_MAP_REG

PRO_SLC0_INTR_MAP_REG 10 10 SLC0_INTR 10 10 APP_SLC0_INTR_MAP_REG

PRO_SLC1_INTR_MAP_REG 11 11 SLC1_INTR 11 11 APP_SLC1_INTR_MAP_REG

PRO_UHCI0_INTR_MAP_REG 12 12 UHCI0_INTR 12 12 APP_UHCI0_INTR_MAP_REG

PRO_UHCI1_INTR_MAP_REG 13 13 UHCI1_INTR 13 13 APP_UHCI1_INTR_MAP_REG

PRO_TG_T0_LEVEL_INT_MAP_REG 14 14 TG_T0_LEVEL_INT 14 14 APP_TG_T0_LEVEL_INT_MAP_REG

PRO_TG_T1_LEVEL_INT_MAP_REG 15 15 TG_T1_LEVEL_INT 15 15 APP_TG_T1_LEVEL_INT_MAP_REG

PRO_TG_WDT_LEVEL_INT_MAP_REG 16 16 TG_WDT_LEVEL_INT 16 16 APP_TG_WDT_LEVEL_INT_MAP_REG

PRO_TG_LACT_LEVEL_INT_MAP_REG 17 17 TG_LACT_LEVEL_INT 17 17 APP_TG_LACT_LEVEL_INT_MAP_REG

PRO_TG1_T0_LEVEL_INT_MAP_REG 18 18 TG1_T0_LEVEL_INT 18 18 APP_TG1_T0_LEVEL_INT_MAP_REG

PRO_TG1_T1_LEVEL_INT_MAP_REG 19 19 TG1_T1_LEVEL_INT 19 19 APP_TG1_T1_LEVEL_INT_MAP_REG

PRO_TG1_WDT_LEVEL_INT_MAP_REG 20 20 TG1_WDT_LEVEL_INT 20 20 APP_TG1_WDT_LEVEL_INT_MAP_REG

PRO_TG1_LACT_LEVEL_INT_MAP_REG 21 21 TG1_LACT_LEVEL_INT 21 21 APP_TG1_LACT_LEVEL_INT_MAP_REG

PRO_GPIO_INTERRUPT_PRO_MAP_REG 22 22 GPIO_INTERRUPT_PRO GPIO_INTERRUPT_APP 22 22 APP_GPIO_INTERRUPT_APP_MAP_REG

PRO_GPIO_INTERRUPT_PRO_NMI_MAP_REG 23 23 GPIO_INTERRUPT_PRO_NMI GPIO_INTERRUPT_APP_NMI 23 23 APP_GPIO_INTERRUPT_APP_NMI_MAP_REG

PRO_CPU_INTR_FROM_CPU_0_MAP_REG 24 24 CPU_INTR_FROM_CPU_0 24 24 APP_CPU_INTR_FROM_CPU_0_MAP_REG

PRO_CPU_INTR_FROM_CPU_1_MAP_REG 25 25 CPU_INTR_FROM_CPU_1 25 25 APP_CPU_INTR_FROM_CPU_1_MAP_REG

PRO_CPU_INTR_FROM_CPU_2_MAP_REG 26 26 CPU_INTR_FROM_CPU_2 26 26 APP_CPU_INTR_FROM_CPU_2_MAP_REG

PRO_CPU_INTR_FROM_CPU_3_MAP_REG 27 27 CPU_INTR_FROM_CPU_3 27 27 APP_CPU_INTR_FROM_CPU_3_MAP_REG

PRO_SPI_INTR_0_MAP_REG 28 28 SPI_INTR_0 28 28 APP_SPI_INTR_0_MAP_REG

PRO_SPI_INTR_1_MAP_REG 29 29 SPI_INTR_1 29 29 APP_SPI_INTR_1_MAP_REG

PRO_SPI_INTR_2_MAP_REG 30 30 SPI_INTR_2 30 30 APP_SPI_INTR_2_MAP_REG

PRO_SPI_INTR_3_MAP_REG 31 31 SPI_INTR_3 31 31 APP_SPI_INTR_3_MAP_REG

PRO_I2S0_INT_MAP_REG 0

PRO_INTR_STATUS_REG_1

32 I2S0_INT 32

APP_INTR_STATUS_REG_1

0 APP_I2S0_INT_MAP_REG

PRO_I2S1_INT_MAP_REG 1 33 I2S1_INT 33 1 APP_I2S1_INT_MAP_REG

PRO_UART_INTR_MAP_REG 2 34 UART_INTR 34 2 APP_UART_INTR_MAP_REG

PRO_UART1_INTR_MAP_REG 3 35 UART1_INTR 35 3 APP_UART1_INTR_MAP_REG

PRO_UART2_INTR_MAP_REG 4 36 UART2_INTR 36 4 APP_UART2_INTR_MAP_REG

PRO_SDIO_HOST_INTERRUPT_MAP_REG 5 37 SDIO_HOST_INTERRUPT 37 5 APP_SDIO_HOST_INTERRUPT_MAP_REG

PRO_EMAC_INT_MAP_REG 6 38 EMAC_INT 38 6 APP_EMAC_INT_MAP_REG

PRO_PWM0_INTR_MAP_REG 7 39 PWM0_INTR 39 7 APP_PWM0_INTR_MAP_REG

PRO_PWM1_INTR_MAP_REG 8 40 PWM1_INTR 40 8 APP_PWM1_INTR_MAP_REG

PRO_PWM2_INTR_MAP_REG 9 41 PWM2_INTR 41 9 APP_PWM2_INTR_MAP_REG

PRO_PWM3_INTR_MAP_REG 10 42 PWM3_INTR 42 10 APP_PWM3_INTR_MAP_REG

PRO_LEDC_INT_MAP_REG 11 43 LEDC_INT 43 11 APP_LEDC_INT_MAP_REG

PRO_EFUSE_INT_MAP_REG 12 44 EFUSE_INT 44 12 APP_EFUSE_INT_MAP_REG

PRO_CAN_INT_MAP_REG 13 45 CAN_INT 45 13 APP_CAN_INT_MAP_REG

PRO_RTC_CORE_INTR_MAP_REG 14 46 RTC_CORE_INTR 46 14 APP_RTC_CORE_INTR_MAP_REG

PRO_RMT_INTR_MAP_REG 15 47 RMT_INTR 47 15 APP_RMT_INTR_MAP_REG

PRO_PCNT_INTR_MAP_REG 16 48 PCNT_INTR 48 16 APP_PCNT_INTR_MAP_REG

PRO_I2C_EXT0_INTR_MAP_REG 17 49 I2C_EXT0_INTR 49 17 APP_I2C_EXT0_INTR_MAP_REG

PRO_I2C_EXT1_INTR_MAP_REG 18 50 I2C_EXT1_INTR 50 18 APP_I2C_EXT1_INTR_MAP_REG

PRO_RSA_INTR_MAP_REG 19 51 RSA_INTR 51 19 APP_RSA_INTR_MAP_REG

PRO_SPI1_DMA_INT_MAP_REG 20 52 SPI1_DMA_INT 52 20 APP_SPI1_DMA_INT_MAP_REG

E
spressifS

ystem
s

28
E

S
P

32
TechnicalR

eference
M

anualV
1.8

2.
IN
TER

R
U
P
T
M
A
TR

IX

PRO_CPU APP_CPU

Peripheral Interrupt Source

Status Register Status Register
Peripheral Interrupt

Configuration Register
Bit Name

No. Name No.
Name Bit

Peripheral Interrupt

Configuration Register

PRO_SPI2_DMA_INT_MAP_REG 21

PRO_INTR_STATUS_REG_1

53 SPI2_DMA_INT 53

APP_INTR_STATUS_REG_1

21 APP_SPI2_DMA_INT_MAP_REG

PRO_SPI3_DMA_INT_MAP_REG 22 54 SPI3_DMA_INT 54 22 APP_SPI3_DMA_INT_MAP_REG

PRO_WDG_INT_MAP_REG 23 55 WDG_INT 55 23 APP_WDG_INT_MAP_REG

PRO_TIMER_INT1_MAP_REG 24 56 TIMER_INT1 56 24 APP_TIMER_INT1_MAP_REG

PRO_TIMER_INT2_MAP_REG 25 57 TIMER_INT2 57 25 APP_TIMER_INT2_MAP_REG

PRO_TG_T0_EDGE_INT_MAP_REG 26 58 TG_T0_EDGE_INT 58 26 APP_TG_T0_EDGE_INT_MAP_REG

PRO_TG_T1_EDGE_INT_MAP_REG 27 59 TG_T1_EDGE_INT 59 27 APP_TG_T1_EDGE_INT_MAP_REG

PRO_TG_WDT_EDGE_INT_MAP_REG 28 60 TG_WDT_EDGE_INT 60 28 APP_TG_WDT_EDGE_INT_MAP_REG

PRO_TG_LACT_EDGE_INT_MAP_REG 29 61 TG_LACT_EDGE_INT 61 29 APP_TG_LACT_EDGE_INT_MAP_REG

PRO_TG1_T0_EDGE_INT_MAP_REG 30 62 TG1_T0_EDGE_INT 62 30 APP_TG1_T0_EDGE_INT_MAP_REG

PRO_TG1_T1_EDGE_INT_MAP_REG 31 63 TG1_T1_EDGE_INT 63 31 APP_TG1_T1_EDGE_INT_MAP_REG

PRO_TG1_WDT_EDGE_INT_MAP_REG 0

PRO_INTR_STATUS_REG_2

64 TG1_WDT_EDGE_INT 64

APP_INTR_STATUS_REG_2

0 APP_TG1_WDT_EDGE_INT_MAP_REG

PRO_TG1_LACT_EDGE_INT_MAP_REG 1 65 TG1_LACT_EDGE_INT 65 1 APP_TG1_LACT_EDGE_INT_MAP_REG

PRO_MMU_IA_INT_MAP_REG 2 66 MMU_IA_INT 66 2 APP_MMU_IA_INT_MAP_REG

PRO_MPU_IA_INT_MAP_REG 3 67 MPU_IA_INT 67 3 APP_MPU_IA_INT_MAP_REG

PRO_CACHE_IA_INT_MAP_REG 4 68 CACHE_IA_INT 68 4 APP_CACHE_IA_INT_MAP_REG

E
spressifS

ystem
s

29
E

S
P

32
TechnicalR

eference
M

anualV
1.8

2. INTERRUPT MATRIX

2.3.2 CPU Interrupt

Both of the two CPUs (PRO and APP) have 32 interrupts each, of which 26 are peripheral interrupts. All

interrupts in a CPU are listed in Table 7.

Table 7: CPU Interrupts

No. Category Type Priority Level

0 Peripheral Level-Triggered 1

1 Peripheral Level-Triggered 1

2 Peripheral Level-Triggered 1

3 Peripheral Level-Triggered 1

4 Peripheral Level-Triggered 1

5 Peripheral Level-Triggered 1

6 Internal Timer.0 1

7 Internal Software 1

8 Peripheral Level-Triggered 1

9 Peripheral Level-Triggered 1

10 Peripheral Edge-Triggered 1

11 Internal Profiling 3

12 Peripheral Level-Triggered 1

13 Peripheral Level-Triggered 1

14 Peripheral NMI NMI

15 Internal Timer.1 3

16 Internal Timer.2 5

17 Peripheral Level-Triggered 1

18 Peripheral Level-Triggered 1

19 Peripheral Level-Triggered 2

20 Peripheral Level-Triggered 2

21 Peripheral Level-Triggered 2

22 Peripheral Edge-Triggered 3

23 Peripheral Level-Triggered 3

24 Peripheral Level-Triggered 4

25 Peripheral Level-Triggered 4

26 Peripheral Level-Triggered 5

27 Peripheral Level-Triggered 3

28 Peripheral Edge-Triggered 4

29 Internal Software 3

30 Peripheral Edge-Triggered 4

31 Peripheral Level-Triggered 5

2.3.3 Allocate Peripheral Interrupt Sources to Peripheral Interrupt on CPU

In this section:

• Source_X stands for any particular peripheral interrupt source.

• PRO_X_MAP_REG (or APP_X_MAP_REG) stands for any particular peripheral interrupt configuration

Espressif Systems 30 ESP32 Technical Reference Manual V1.8

2. INTERRUPT MATRIX

register of the PRO_CPU (or APP_CPU). The peripheral interrupt configuration register corresponds to the

peripheral interrupt source Source_X. In Table 6 the registers listed under “PRO_CPU (APP_CPU) -

Peripheral Interrupt Configuration Register” correspond to the peripheral interrupt sources listed in

“Peripheral Interrupt Source - Name”.

• Interrupt_P stands for CPU peripheral interrupt, numbered as Num_P. Num_P can take the ranges 0 ~ 5, 8

~ 10, 12 ~ 14, 17 ~ 28, 30 ~ 31.

• Interrupt_I stands for the CPU internal interrupt numbered as Num_I. Num_I can take values 6, 7, 11, 15,

16, 29.

Using this terminology, the possible operations of the Interrupt Matrix controller can be described as

follows:

• Allocate peripheral interrupt source Source_X to CPU (PRO_CPU or APP_CPU)

Set PRO_X_MAP_REG�or APP_X_MAP_REG�to Num_P. Num_P can be any CPU peripheral interrupt

number. CPU interrupts can be shared between multiple peripherals (see below).

• Disable peripheral interrupt source Source_X for CPU (PRO_CPU or APP_CPU)

Set PRO_X_MAP_REG�or APP_X _MAP_REG�for peripheral interrupt source to any Num_I. The specific

choice of internal interrupt number does not change behaviour, as none of the interrupt numbered as

Num_I is connected to either CPU.

• Allocate multiple peripheral sources Source_Xn ORed to PRO_CPU (APP_CPU) peripheral interrupt

Set multiple PRO_Xn_MAP_REG (APP_Xn_MAP_REG) to the same Num_P. Any of these peripheral

interrupts will trigger CPU Interrupt_P.

2.3.4 CPU NMI Interrupt Mask

The Interrupt Matrix temporarily masks all peripheral interrupt sources allocated to PRO_CPU’s (or APP_CPU’s)

NMI interrupt, if it receives the signal PRO_CPU NMI Interrupt Mask (or APP_CPU NMI Interrupt Mask) from the

peripheral PID Controller, respectively.

2.3.5 Query Current Interrupt Status of Peripheral Interrupt Source

The current interrupt status of a peripheral interrupt source can be read via the bit value in

PRO_INTR_STATUS_REG_n (APP_INTR_STATUS_REG_n), as shown in the mapping in Table 6.

Espressif Systems 31 ESP32 Technical Reference Manual V1.8

3. RESET AND CLOCK

3. Reset and Clock

3.1 System Reset

3.1.1 Introduction

The ESP32 has three reset levels: CPU reset, Core reset, and System reset. None of these reset levels clear the

RAM. Figure 4 shows the subsystems included in each reset level.

Figure 4: System Reset

• CPU reset: Only resets the registers of one or both of the CPU cores.

• Core reset: Resets all the digital registers, including CPU cores, external GPIO and digital GPIO. The RTC is

not reset.

• System reset: Resets all the registers on the chip, including those of the RTC.

3.1.2 Reset Source

While most of the time the APP_CPU and PRO_CPU will be reset simultaneously, some reset sources are able to

reset only one of the two cores. The reset reason for each core can be looked up individually: the PRO_CPU

reset reason will be stored in RTC_CNTL_RESET_CAUSE_PROCPU, the reset reason for the APP_CPU in

APP_CNTL_RESET_CAUSE_PROCPU. Table 8 shows the possible reset reason values that can be read from

these registers.

Table 8: PRO_CPU and APP_CPU Reset Reason Values

PRO APP Source Reset Type Note

0x01 0x01 Chip Power On Reset System Reset -

0x10 0x10 RWDT System Reset System Reset See WDT Chapter.

0x0F 0x0F Brown Out Reset System Reset See Power Management Chapter.

0x03 0x03 Software System Reset Core Reset Configure RTC_CNTL_SW_SYS_RST register.

0x05 0x05 Deep Sleep Reset Core Reset See Power Management Chapter.

0x07 0x07 MWDT0 Global Reset Core Reset See WDT Chapter.

Espressif Systems 32 ESP32 Technical Reference Manual V1.8

3. RESET AND CLOCK

PRO APP APP Source Reset Type Note

0x08 0x08 MWDT1 Global Reset Core Reset See WDT Chapter.

0x09 0x09 RWDT Core Reset Core Reset See WDT Chapter.

0x0B - MWDT0 CPU Reset CPU Reset See WDT Chapter.

0x0C - Software CPU Reset CPU Reset Configure RTC_CNTL_SW_APPCPU_RST register.

- 0x0B MWDT1 CPU Reset CPU Reset See WDT Chapter.

- 0x0C Software CPU Reset CPU Reset Configure RTC_CNTL_SW_APPCPU_RST register.

0x0D 0x0D RWDT CPU Reset CPU Reset See WDT Chapter.

- 0xE PRO CPU Reset CPU Reset

Indicates that the PRO CPU has indepen-

dently reset the APP CPU by configuring the

DPORT_APPCPU_RESETTING register.

3.2 System Clock

3.2.1 Introduction

The ESP32 integrates multiple clock sources for the CPU cores, the peripherals and the RTC. These clocks can

be configured to meet different requirements. Figure 5 shows the system clock structure.

Figure 5: System Clock

Espressif Systems 33 ESP32 Technical Reference Manual V1.8

3. RESET AND CLOCK

3.2.2 Clock Source

The ESP32 can use an external crystal oscillator, an internal PLL or an oscillating circuit as a clock source.

Specifically, the clock sources available are:

• High Speed Clocks

– PLL_CLK is an internal PLL clock with a frequency of 320 MHz.

– XTL_CLK is a clock signal generated using an external crystal with a frequency range of 2 ~ 40 MHz.

• Low Power Clocks

– XTL32K_CLK is a clock generated using an external crystal with a frequency of 32 KHz.

– RTC8M_CLK is an internal clock with a default frequency of 8 MHz. This frequency is adjustable.

– RTC8M_D256_CLK is divided from RTC8M_CLK 256. Its frequency is (RTC8M_CLK / 256). With the

default RTC8M_CLK frequency of 8 MHz, this clock runs at 31.250 KHz.

– RTC_CLK is an internal low power clock with a default frequency of 150 KHz. This frequency is

adjustable.

• Audio Clock

– APLL_CLK is an internal Audio PLL clock with a frequency range of 16 ~ 128 MHz.

3.2.3 CPU Clock

As Figure 5 shows, CPU_CLK is the master clock for both CPU cores. CPU_CLK clock can be as high as 160

MHz when the CPU is in high performance mode. Alternatively, the CPU can run at lower frequencies to reduce

power consumption.

The CPU_CLK clock source is determined by the RTC_CNTL_SOC_CLK_SEL register. PLL_CLK, APLL_CLK,

RTC8M_CLK and XTL_CLK can be set as the CPU_CLK source; see Table 9 and 10.

Table 9: CPU_CLK Source

RTC_CNTL_SOC_CLK_SEL Value Clock Source

0 XTL_CLK

1 PLL_CLK

2 RTC8M_CLK

3 APLL_CLK

Espressif Systems 34 ESP32 Technical Reference Manual V1.8

3. RESET AND CLOCK

Table 10: CPU_CLK Derivation

Clock Source SEL* CPU Clock

0 / XTL_CLK -
CPU_CLK = XTL_CLK / (APB_CTRL_PRE_DIV_CNT+1)

APB_CTRL_PRE_DIV_CNT range is 0 ~ 1023. Default is 0.

1 / PLL_CLK 0
CPU_CLK = PLL_CLK / 4

CPU_CLK frequency is 80 MHz

1 / PLL_CLK 1
CPU_CLK = PLL_CLK / 2

CPU_CLK frequency is 160 MHz

2 / RTC8M_CLK -
CPU_CLK = RTC8M_CLK / (APB_CTRL_PRE_DIV_CNT+1)

APB_CTRL_PRE_DIV_CNT range is 0 ~ 1023. Default is 0.

3 / APLL_CLK 0 CPU_CLK = APLL_CLK / 4

3 / APLL_CLK 1 CPU_CLK = APLL_CLK / 2
*SEL: DPORT_CPUPERIOD _SEL value

3.2.4 Peripheral Clock

Peripheral clocks include APB_CLK, REF_TICK, LEDC_SCLK, APLL_CLK and PLL_D2_CLK.

Table 11 shows which clocks can be used by which peripherals.

Table 11: Peripheral Clock Usage

Peripherals APB_CLK REF_TICK LEDC_SCLK APLL_CLK PLL_D2_CLK

EMAC Y N N Y N

TIMG Y N N N N

I2S Y N N Y Y

UART Y Y N N N

RMT Y Y N N N

LED PWM Y Y Y N N

PWM Y N N N N

I2C Y N N N N

SPI Y N N N N

PCNT Y N N N N

Efuse Controller Y N N N N

SDIO Slave Y N N N N

SDMMC Y N N N N

3.2.4.1 APB_CLK Source

The APB_CLK is derived from CPU_CLK as detailed in Table 12. The division factor depends on the CPU_CLK

source.

Espressif Systems 35 ESP32 Technical Reference Manual V1.8

3. RESET AND CLOCK

Table 12: APB_CLK Derivation

CPU_CLK Source APB_CLK

PLL_CLK PLL_CLK / 4

APLL_CLK CPU_CLK / 2

XTAL_CLK CPU_CLK

RTC8M_CLK CPU_CLK

3.2.4.2 REF_TICK Source

REF_TICK is derived from APB_CLK via a divider. The divider value used depends on the APB_CLK source,

which in turn depends on the CPU_CLK source.

By configuring correct divider values for each APB_CLK source, the user can ensure that the REF_TICK

frequency does not change when CPU_CLK changes source, causing the APB_CLK frequency to change.

Clock divider registers are shown in Table 13.

Table 13: REF_TICK Derivation

CPU_CLK & APB_CLK Source Clock Divider Register

PLL_CLK APB_CTRL_PLL_TICK_NUM

XTAL_CLK APB_CTRL_XTAL_TICK_NUM

APLL_CLK APB_CTRL_APLL_TICK_NUM

RTC8M_CLK APB_CTRL_CK8M_TICK_NUM

3.2.4.3 LEDC_SCLK Source

The LEDC_SCLK clock source is selected by the LEDC_APB_CLK_SEL register, as shown in Table 14.

Table 14: LEDC_SCLK Derivation

LEDC_APB_CLK_SEL Value LEDC_SCLK Source

1 RTC8M_CLK

0 APB_CLK

3.2.4.4 APLL_SCLK Source

The APLL_CLK is sourced from PLL_CLK, with its output frequency configured using the APLL configuration

registers.

3.2.4.5 PLL_D2_CLK Source

PLL_D2_CLK is half the PLL_CLK frequency.

Espressif Systems 36 ESP32 Technical Reference Manual V1.8

3. RESET AND CLOCK

3.2.4.6 Clock Source Considerations

Most peripherals will operate using the APB_CLK frequency as a reference. When this frequency changes, the

peripherals will need to update their clock configuration to operate at the same frequency after the change.

Peripherals accessing REF_TICK can continue operating normally when switching clock sources, without

changing clock source. Please see Table 11 for details.

The LED PWM module can use RTC8M_CLK as a clock source when APB_CLK is disabled. In other words,

when the system is in low-power consumption mode (see power manager module), normal peripherals will be

halted (APB_CLK is turned off), but the LED PWM can work normally via RTC8M_CLK.

3.2.5 Wi-Fi BT Clock

Wi-Fi and BT can only operate if APB_CLK uses PLL_CLK as its clock source. Suspending PLL_CLK requires

Wi-Fi and BT to both have entered low-power consumption mode first.

For LOW_POWER_CLK, one of RTC_CLK, SLOW_CLK, RTC8M_CLK or XTL_CLK can be selected as the

low-power consumption mode clock source for Wi-Fi and BT.

3.2.6 RTC Clock

The clock sources of SLOW_CLK and FAST_CLK are low-frequency clocks. The RTC module can operate when

most other clocks are stopped.

SLOW_CLK is used to clock the Power Management module. It can be sourced from RTC_CLK, XTL32K_CLK

or RTC8M_D256_CLK

FAST_CLK is used to clock the On-chip Sensor module. It can be sourced from a divided XTL_CLK or from

RTC8M_CLK.

3.2.7 Audio PLL

The operation of audio and other time-critical data-transfer applications requires highly-configurable, low-jitter,

and accurate clock sources. The clock sources derived from system clocks that serve digital peripherals may

carry jitter and, therefore, they do not support a high-precision clock frequency setting.

Providing an integrated precision clock source can minimize system cost. To this end, ESP32 integrates an audio

PLL intended for I2S peripherals. More details on how to clock the I2S module, using an APLL clock, can be

found in Chapter I2S. The Audio PLL formula is as follows:

fout =
fxtal(sdm2 + sdm1

28 + sdm0
216 + 4)

2(odir + 2)

The parameters of this formula are defined below:

• fxtal: the frequency of the crystal oscillator, usually 40 MHz;

• sdm0: the value is 0 ~ 255;

• sdm1: the value is 0 ~ 255;

• sdm2: the value is 0 ~ 63;

• odir: the value is 0 ~ 31;

Espressif Systems 37 ESP32 Technical Reference Manual V1.8

3. RESET AND CLOCK

The operating frequency range of the numerator is 350 MHz ~ 500 MHz:

350MHz < fxtal(sdm2 +
sdm1

28 +
sdm0
216 + 4) < 500MHz

Please note that sdm1 and sdm0 are not available on revision0 of ESP32. Please consult the silicon revision in

ECO and Workarounds for Bugs in ESP32 for further details.

Audio PLL can be manually enabled or disabled via registers RTC_CNTL_PLLA_FORCE_PU and

RTC_CNTL_PLLA_FORCE_PD, respectively. Disabling it takes priority over enabling it. When

RTC_CNTL_PLLA_FORCE_PU and RTC_CNTL_PLLA_FORCE_PD are 0, PLL will follow the state of the system,

i.e., when the system enters sleep mode, PLL will be disabled automatically; when the system wakes up, PLL will

be enabled automatically.

Espressif Systems 38 ESP32 Technical Reference Manual V1.8

http://espressif.com/sites/default/files/documentation/eco_and_workarounds_for_bugs_in_esp32_en.pdf

4. IO_MUX AND GPIO MATRIX

4. IO_MUX and GPIO Matrix

4.1 Introduction

The ESP32 chip features 40 physical GPIO pads. Some GPIO pads can neither be used nor have the

corresponding pins on the chip package. Each pad can be used as a general-purpose I/O, or be connected to

an internal peripheral signal. The IO_MUX, RTC IO_MUX and the GPIO matrix are responsible for routing signals

from the peripherals to GPIO pads. Together these systems provide highly configurable I/O.

This chapter describes the signal selection and connection between the digital pads (FUNC_SEL, IE, OE, WPU,

WDU, etc), 256 peripheral input/output signals (control signals: SIG_IN_SEL, SIG_OUT_SEL, IE, OE, etc), fast

peripheral input/output signals (control signals: IE, OE, etc), and RTC IO_MUX.

Figure 6: IO_MUX, RTC IO_MUX and GPIO Matrix Overview

1. The IO_MUX contains one register per GPIO pad. Each pad can be configured to perform a ”GPIO” function

(when connected to the GPIO Matrix) or a direct function (bypassing the GPIO Matrix). Some high-speed

digital functions (Ethernet, SDIO, SPI, JTAG, UART) can bypass the GPIO Matrix for better high-frequency

digital performance. In this case, the IO_MUX is used to connect these pads directly to the peripheral.)

See Section 4.10 for a list of IO_MUX functions for each I/O pad.

2. The GPIO Matrix is a full-switching matrix between the peripheral input/output signals and the pads.

• For input to the chip: Each of the 256 internal peripheral inputs can select any GPIO pad as the input

source.

• For output from the chip: The output signal of each of the 40 GPIO pads can be from one of the 256

peripheral output signals.

See Section 4.9 for a list of GPIO Matrix peripheral signals.

3. RTC IO_MUX is used to connect GPIO pads to their low-power and analog functions. Only a subset of

GPIO pads have these optional ”RTC” functions.

See Section 4.11 for a list of RTC IO_MUX functions.

Espressif Systems 39 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

4.2 Peripheral Input via GPIO Matrix

4.2.1 Summary

To receive a peripheral input signal via the GPIO Matrix, the GPIO Matrix is configured to source the peripheral

signal’s input index (0-255) from one of the 40 GPIOs (0-39).

The input signal is read from the GPIO pad through the IO_MUX. The IO_MUX must be configured to set the

chosen pad to ”GPIO” function. This causes the GPIO pad input signal to be routed into the GPIO Matrix, which

in turn routes it to the selected peripheral input.

4.2.2 Functional Description

Figure 7 shows the logic for input selection via GPIO Matrix.

GPIO_FUNCy_IN_SEL

GPIO0_in

GPIO1_in

GPIO2_in

GPIO3_in

GPIO39_in

0 (FUNC)

1 (FUNC)

2 (GPIO)

3

39

Peripheral Signal Y

I/O Pad X

In GPIO matrix In IO MUX

GPIO X in

GPIOx_MCU_SEL

2

1

3

X
GPIOX_in

0

Constant 0 input

Constant 1 input
(0x30) 48

(0x38) 56

0

1 (GPIO)

GPIO_SIGxx_IN_SEL

GPIOx_FUN_IE = 1

Figure 7: Peripheral Input via IO_MUX, GPIO Matrix

To read GPIO pad X into peripheral signal Y, follow the steps below:

1. Configure the GPIO_FUNCy_IN_SEL_CFG register for peripheral signal Y in the GPIO Matrix:

• Set the GPIO_FUNCx_IN_SEL field to the number of the GPIO pad X to read from.

2. Configure the GPIO_FUNCx_OUT_SEL_CFG and GPIO_ENABLE_DATA[x] for GPIO pad X in the GPIO

Matrix:

• For input only signals, the pad output can be disabled by setting the GPIO_FUNCx_OEN_SEL bits to

1 and GPIO_ENABLE_DATA[x] to 0. For input/output dual mode signal, there is no need to disable

output.

3. Configure the IO_MUX register for GPIO pad X:

• Set the function field to GPIO.

• Enable the input by setting the xx_FUN_IE bit.

• Set xx_FUN_WPU and xx_FUN_WPD fields, as required, to enable internal pull-up/pull-down resistors.

Notes:

• One input pad can be connected to multiple input_signals.

Espressif Systems 40 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

• The input signal can be inverted with GPIO_FUNCx_IN_INV_SEL.

• It is possible to have a peripheral read a constantly low or constantly high input value without connecting

this input to a pad. This can be done by selecting a special GPIO_FUNCy_IN_SEL input, instead of a GPIO

number:

– When GPIO_FUNCx_IN_SEL is 0x30, input_signal_x is always 0.

– When GPIO_FUNCx_IN_SEL is 0x38, input_signal_x is always 1.

4.2.3 Simple GPIO Input

The GPIO_IN_REG/GPIO_IN1_REG register holds the input values of each GPIO pad.

The input value of any GPIO pin can be read at any time without configuring the GPIO Matrix for a particular

peripheral signal. However, it is necessary to configure the xx_FUN_IE register for pad X, as shown in Section

4.2.2.

4.3 Peripheral Output via GPIO Matrix

4.3.1 Summary

To output a signal from a peripheral via the GPIO Matrix, the GPIO Matrix is configured to route the peripheral

output signal (0-255) to one of the first 34 GPIOs (0-33). (Note that GPIO pads 34-39 cannot be used as

outputs.)

The output signal is routed from the peripheral into the GPIO Matrix. It is then routed into the IO_MUX, which is

configured to set the chosen pad to ”GPIO” function. This causes the output GPIO signal to be connected to the

pad.

4.3.2 Functional Description

One of 256 input signals can be selected to go through the GPIO matrix into the IO_MUX and then to a pad.

Figure 8 illustrates the configuration.

To output peripheral signal Y to particular GPIO pad X, follow these steps:

1. Configure the GPIO_FUNCx_OUT_SEL_CFG register and GPIO_ENABLE_DATA[x] of GPIO X in the GPIO

Matrix:

• Set GPIO_FUNCx_OUT_SEL to the index of required peripheral output signal Y.

• Set the GPIO_FUNCx_OEN_SEL bits and GPIO_ENABLE_DATA[x] to enable output mode, or clear

GPIO_FUNCx_OEN_SEL to zero so that the output enable signal will be decided by the internal logic

function.

2. Alternatively, to enable open drain mode set the GPIO_PINx_PAD_DRIVER bit in the GPIO_PINx register.

3. Configure the I/O mux register for GPIO pad X:

• Set the function field to GPIO.

• Set the xx_FUN_DRV field to the required value for output strength. The higher the value is, the

stronger the output becomes. Pull up/down the pad by configuring xx_FUNC_WPU and

xx_FUNC_WPD registers in open drain mode.

Espressif Systems 41 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Notes:

• The output signal from a single peripheral can be sent to multiple pads simultaneously.

• Only the first 34 GPIOs (0-33) can be used as outputs.

• The output signal can be inverted by setting the GPIO_FUNCx_OUT_INV_SEL bit.

GPIO_FUNCx_OUT_SEL

signal0_out

signal1_out

signal2_out

signal3_out

signal255_out

GPIO_OUT_DATA bit x

0

1

2

3

255

256
(0x100)

GPIOx_out

In GPIO matrix In IO MUX

0 (FUNC)

1 (FUNC)

2 (GPIO) I/O Pad XGPIO X out

GPIOx_MCU_SEL

GPIOx_FUN_OE = 1

Figure 8: Output via GPIO Matrix

4.3.3 Simple GPIO Output

The GPIO Matrix can also be used for simple GPIO output - setting a bit in the GPIO_OUT_DATA register will

write to the corresponding GPIO pad.

To configure a pad as simple GPIO output, the GPIO Matrix GPIO_FUNCx_OUT_SEL register is configured with a

special peripheral index value (0x100).

4.4 Direct I/O via IO_MUX

4.4.1 Summary

Some high speed digital functions (Ethernet, SDIO, SPI, JTAG, UART) can bypass the GPIO Matrix for better

high-frequency digital performance. In this case, the IO_MUX is used to connect these pads directly to the

peripheral.

Selecting this option is less flexible than using the GPIO Matrix, as the IO_MUX register for each GPIO pad can

only select from a limited number of functions. However, better high-frequency digital performance will be

maintained.

4.4.2 Functional Description

Two registers must be configured in order to bypass the GPIO Matrix for peripheral I/O:

1. IO_MUX for the GPIO pad must be set to the required pad function (Section 4.10 has a list of pad functions).

2. For inputs, the SIG_IN_SEL register must be set to route the input directly to the peripheral.

Espressif Systems 42 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

4.5 RTC IO_MUX for Low Power and Analog I/O

4.5.1 Summary

Out of the 40 physical GPIO pads, 18 pads have low power capabilities (RTC domain) and analog functions

which are handled by the RTC subsystem of ESP32. The IO_MUX and GPIO Matrix are not used for these

functions; rather, the RTC_MUX is used to redirect the I/O to the RTC subsystem.

When configured as RTC GPIOs, the output pads can still retain the output level value when the chip is in

Deep-sleep mode, and the input pads can wake up the chip from Deep-sleep.

Section 4.11 has a list of RTC_MUX pins and their functions.

4.5.2 Functional Description

Each pad with analog and RTC functions is controlled by the RTC_IO_TOUCH_PADx_TO_GPIO bit in the

RTC_GPIO_PINx register. By default this bit is set to 1, routing all I/O via the IO_MUX subsystem as described in

earlier subsections.

If the RTC_IO_TOUCH_PADx_TO_GPIO bit is cleared, then I/O to and from that pad is routed to the RTC

subsystem. In this mode, the RTC_GPIO_PINx register is used for digital I/O and the analog features of the pad

are also available. See Section 4.11 for a list of RTC pin functions.

See 4.11 for a table mapping GPIO pads to their RTC equivalent pins and analog functions. Note that the

RTC_IO_PINx registers use the RTC GPIO pin numbering, not the GPIO pad numbering.

4.6 Light-sleep Mode Pin Functions

Pins can have different functions when the ESP32 is in Light-sleep mode. If the GPIOxx_SLP_SEL bit in the

IO_MUX register for a GPIO pad is set to 1, a different set of registers is used to control the pad when the ESP32

is in Light-sleep mode:

Table 15: IO_MUX Light-sleep Pin Function Registers

Normal Execution Light-sleep Mode
IO_MUX Function

OR GPIOxx_SLP_SEL = 0 AND GPIOxx_SLP_SEL = 1

Output Drive Strength GPIOxx_FUNC_DRV GPIOxx_MCU_DRV

Pullup Resistor GPIOxx_FUNC_WPU GPIOxx_MCU_WPU

Pulldown Resistor GPIOxx_FUNC_WPD GPIOxx_MCU_WPD

Output Enable (From GPIO Matrix _OEN field) GPIOxx_MCU_OE

If GPIOxx_SLP_SEL is set to 0, the pin functions remain the same in both normal execution and Light-sleep

modes.

4.7 Pad Hold Feature

Each IO pad (including the RTC pads) has an individual hold function controlled by a RTC register. When the pad

is set to hold, the state is latched at that moment and will not change no matter how the internal signals change

or how the IO_MUX configuration or GPIO configuration is modified. Users can use the hold function for the pads

Espressif Systems 43 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

to retain the pad state through a core reset and system reset triggered by watchdog time-out or Deep-sleep

events.

4.8 I/O Pad Power Supply

IO pad power supply is shown in Figure 9.

Figure 9: ESP32 I/O Pad Power Sources

• Pads marked blue are RTC pads that have their individual analog function and can also act as normal

digital IO pads. For details, please see Section 4.11.

• Pads marked pink and green have digital functions only.

• Pads marked green can be powered externally or internally via VDD_SDIO (see below).

4.8.1 VDD_SDIO Power Domain

VDD_SDIO can source or sink current, allowing this power domain to be powered externally or internally. To

power VDD_SDIO externally, apply the same power supply of VDD3P3_RTC to the VDD_SDIO pad.

Without an external power supply, the internal regulator will supply VDD_SDIO. The VDD_SDIO voltage can be

configured to be either 1.8V or 3.3V (the same as that at VRTC), depending on the state of the MTDI pad at reset -

a high level configures 1.8V and a low level configures 3.3V. Setting the efuse bit determines the default voltage of

the VDD_SDIO. In addition, software can change the voltage of the VDD_SDIO by configuring register bits.

4.9 Peripheral Signal List

Table 16 contains a list of Peripheral Input/Output signals used by the GPIO Matrix:

Espressif Systems 44 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Table 16: GPIO Matrix Peripheral Signals

Signal Input Signal Output Signal Direct I/O in IO_MUX

0 SPICLK_in SPICLK_out YES

1 SPIQ_in SPIQ_out YES

2 SPID_in SPID_out YES

3 SPIHD_in SPIHD_out YES

4 SPIWP_in SPIWP_out YES

5 SPICS0_in SPICS0_out YES

6 SPICS1_in SPICS1_out

7 SPICS2_in SPICS2_out

8 HSPICLK_in HSPICLK_out YES

9 HSPIQ_in HSPIQ_out YES

10 HSPID_in HSPID_out YES

11 HSPICS0_in HSPICS0_out YES

12 HSPIHD_in HSPIHD_out YES

13 HSPIWP_in HSPIWP_out YES

14 U0RXD_in U0TXD_out YES

15 U0CTS_in U0RTS_out YES

16 U0DSR_in U0DTR_out

17 U1RXD_in U1TXD_out YES

18 U1CTS_in U1RTS_out YES

23 I2S0O_BCK_in I2S0O_BCK_out

24 I2S1O_BCK_in I2S1O_BCK_out

25 I2S0O_WS_in I2S0O_WS_out

26 I2S1O_WS_in I2S1O_WS_out

27 I2S0I_BCK_in I2S0I_BCK_out

28 I2S0I_WS_in I2S0I_WS_out

29 I2CEXT0_SCL_in I2CEXT0_SCL_out

30 I2CEXT0_SDA_in I2CEXT0_SDA_out

31 pwm0_sync0_in sdio_tohost_int_out

32 pwm0_sync1_in pwm0_out0a

33 pwm0_sync2_in pwm0_out0b

34 pwm0_f0_in pwm0_out1a

35 pwm0_f1_in pwm0_out1b

36 pwm0_f2_in pwm0_out2a

37 pwm0_out2b

39 pcnt_sig_ch0_in0

40 pcnt_sig_ch1_in0

41 pcnt_ctrl_ch0_in0

42 pcnt_ctrl_ch1_in0

43 pcnt_sig_ch0_in1

44 pcnt_sig_ch1_in1

45 pcnt_ctrl_ch0_in1

46 pcnt_ctrl_ch1_in1

47 pcnt_sig_ch0_in2

Espressif Systems 45 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Signal Input Signal Output Signal Direct I/O in IO_MUX

48 pcnt_sig_ch1_in2

49 pcnt_ctrl_ch0_in2

50 pcnt_ctrl_ch1_in2

51 pcnt_sig_ch0_in3

52 pcnt_sig_ch1_in3

53 pcnt_ctrl_ch0_in3

54 pcnt_ctrl_ch1_in3

55 pcnt_sig_ch0_in4

56 pcnt_sig_ch1_in4

57 pcnt_ctrl_ch0_in4

58 pcnt_ctrl_ch1_in4

61 HSPICS1_in HSPICS1_out

62 HSPICS2_in HSPICS2_out

63 VSPICLK_in VSPICLK_out_mux YES

64 VSPIQ_in VSPIQ_out YES

65 VSPID_in VSPID_out YES

66 VSPIHD_in VSPIHD_out YES

67 VSPIWP_in VSPIWP_out YES

68 VSPICS0_in VSPICS0_out YES

69 VSPICS1_in VSPICS1_out

70 VSPICS2_in VSPICS2_out

71 pcnt_sig_ch0_in5 ledc_hs_sig_out0

72 pcnt_sig_ch1_in5 ledc_hs_sig_out1

73 pcnt_ctrl_ch0_in5 ledc_hs_sig_out2

74 pcnt_ctrl_ch1_in5 ledc_hs_sig_out3

75 pcnt_sig_ch0_in6 ledc_hs_sig_out4

76 pcnt_sig_ch1_in6 ledc_hs_sig_out5

77 pcnt_ctrl_ch0_in6 ledc_hs_sig_out6

78 pcnt_ctrl_ch1_in6 ledc_hs_sig_out7

79 pcnt_sig_ch0_in7 ledc_ls_sig_out0

80 pcnt_sig_ch1_in7 ledc_ls_sig_out1

81 pcnt_ctrl_ch0_in7 ledc_ls_sig_out2

82 pcnt_ctrl_ch1_in7 ledc_ls_sig_out3

83 rmt_sig_in0 ledc_ls_sig_out4

84 rmt_sig_in1 ledc_ls_sig_out5

85 rmt_sig_in2 ledc_ls_sig_out6

86 rmt_sig_in3 ledc_ls_sig_out7

87 rmt_sig_in4 rmt_sig_out0

88 rmt_sig_in5 rmt_sig_out1

89 rmt_sig_in6 rmt_sig_out2

90 rmt_sig_in7 rmt_sig_out3

91 rmt_sig_out4

92 rmt_sig_out5

93 rmt_sig_out6

Espressif Systems 46 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Signal Input Signal Output Signal Direct I/O in IO_MUX

94 rmt_sig_out7

95 I2CEXT1_SCL_in I2CEXT1_SCL_out

96 I2CEXT1_SDA_in I2CEXT1_SDA_out

97 host_card_detect_n_1 host_ccmd_od_pullup_en_n

98 host_card_detect_n_2 host_rst_n_1

99 host_card_write_prt_1 host_rst_n_2

100 host_card_write_prt_2 gpio_sd0_out

101 host_card_int_n_1 gpio_sd1_out

102 host_card_int_n_2 gpio_sd2_out

103 pwm1_sync0_in gpio_sd3_out

104 pwm1_sync1_in gpio_sd4_out

105 pwm1_sync2_in gpio_sd5_out

106 pwm1_f0_in gpio_sd6_out

107 pwm1_f1_in gpio_sd7_out

108 pwm1_f2_in pwm1_out0a

109 pwm0_cap0_in pwm1_out0b

110 pwm0_cap1_in pwm1_out1a

111 pwm0_cap2_in pwm1_out1b

112 pwm1_cap0_in pwm1_out2a

113 pwm1_cap1_in pwm1_out2b

114 pwm1_cap2_in pwm2_out1h

115 pwm2_flta pwm2_out1l

116 pwm2_fltb pwm2_out2h

117 pwm2_cap1_in pwm2_out2l

118 pwm2_cap2_in pwm2_out3h

119 pwm2_cap3_in pwm2_out3l

120 pwm3_flta pwm2_out4h

121 pwm3_fltb pwm2_out4l

122 pwm3_cap1_in

123 pwm3_cap2_in

124 pwm3_cap3_in

140 I2S0I_DATA_in0 I2S0O_DATA_out0

141 I2S0I_DATA_in1 I2S0O_DATA_out1

142 I2S0I_DATA_in2 I2S0O_DATA_out2

143 I2S0I_DATA_in3 I2S0O_DATA_out3

144 I2S0I_DATA_in4 I2S0O_DATA_out4

145 I2S0I_DATA_in5 I2S0O_DATA_out5

146 I2S0I_DATA_in6 I2S0O_DATA_out6

147 I2S0I_DATA_in7 I2S0O_DATA_out7

148 I2S0I_DATA_in8 I2S0O_DATA_out8

149 I2S0I_DATA_in9 I2S0O_DATA_out9

150 I2S0I_DATA_in10 I2S0O_DATA_out10

151 I2S0I_DATA_in11 I2S0O_DATA_out11

152 I2S0I_DATA_in12 I2S0O_DATA_out12

Espressif Systems 47 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Signal Input Signal Output Signal Direct I/O in IO_MUX

153 I2S0I_DATA_in13 I2S0O_DATA_out13

154 I2S0I_DATA_in14 I2S0O_DATA_out14

155 I2S0I_DATA_in15 I2S0O_DATA_out15

156 I2S0O_DATA_out16

157 I2S0O_DATA_out17

158 I2S0O_DATA_out18

159 I2S0O_DATA_out19

160 I2S0O_DATA_out20

161 I2S0O_DATA_out21

162 I2S0O_DATA_out22

163 I2S0O_DATA_out23

164 I2S1I_BCK_in I2S1I_BCK_out

165 I2S1I_WS_in I2S1I_WS_out

166 I2S1I_DATA_in0 I2S1O_DATA_out0

167 I2S1I_DATA_in1 I2S1O_DATA_out1

168 I2S1I_DATA_in2 I2S1O_DATA_out2

169 I2S1I_DATA_in3 I2S1O_DATA_out3

170 I2S1I_DATA_in4 I2S1O_DATA_out4

171 I2S1I_DATA_in5 I2S1O_DATA_out5

172 I2S1I_DATA_in6 I2S1O_DATA_out6

173 I2S1I_DATA_in7 I2S1O_DATA_out7

174 I2S1I_DATA_in8 I2S1O_DATA_out8

175 I2S1I_DATA_in9 I2S1O_DATA_out9

176 I2S1I_DATA_in10 I2S1O_DATA_out10

177 I2S1I_DATA_in11 I2S1O_DATA_out11

178 I2S1I_DATA_in12 I2S1O_DATA_out12

179 I2S1I_DATA_in13 I2S1O_DATA_out13

180 I2S1I_DATA_in14 I2S1O_DATA_out14

181 I2S1I_DATA_in15 I2S1O_DATA_out15

182 I2S1O_DATA_out16

183 I2S1O_DATA_out17

184 I2S1O_DATA_out18

185 I2S1O_DATA_out19

186 I2S1O_DATA_out20

187 I2S1O_DATA_out21

188 I2S1O_DATA_out22

189 I2S1O_DATA_out23

190 I2S0I_H_SYNC pwm3_out1h

191 I2S0I_V_SYNC pwm3_out1l

192 I2S0I_H_ENABLE pwm3_out2h

193 I2S1I_H_SYNC pwm3_out2l

194 I2S1I_V_SYNC pwm3_out3h

195 I2S1I_H_ENABLE pwm3_out3l

196 pwm3_out4h

Espressif Systems 48 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Signal Input Signal Output Signal Direct I/O in IO_MUX

197 pwm3_out4l

198 U2RXD_in U2TXD_out YES

199 U2CTS_in U2RTS_out YES

200 emac_mdc_i emac_mdc_o

201 emac_mdi_i emac_mdo_o

202 emac_crs_i emac_crs_o

203 emac_col_i emac_col_o

204 pcmfsync_in bt_audio0_irq

205 pcmclk_in bt_audio1_irq

206 pcmdin bt_audio2_irq

207 ble_audio0_irq

208 ble_audio1_irq

209 ble_audio2_irq

210 pcmfsync_out

211 pcmclk_out

212 pcmdout

213 ble_audio_sync0_p

214 ble_audio_sync1_p

215 ble_audio_sync2_p

224 sig_in_func224

225 sig_in_func225

226 sig_in_func226

227 sig_in_func227

228 sig_in_func228

Direct I/O in IO_MUX ”YES” means that this signal is also available directly via IO_MUX. To apply the GPIO

Matrix to these signals, their corresponding SIG_IN_SEL register must be cleared.

4.10 IO_MUX Pad List

Table 17 shows the IO_MUX functions for each I/O pad:

Table 17: IO_MUX Pad Summary

GPIO Pad Name Function 1 Function 2 Function 3 Function 4 Function 5 Function 6 Reset Notes

0 GPIO0 GPIO0 CLK_OUT1 GPIO0 - - EMAC_TX_CLK 3 R

1 U0TXD U0TXD CLK_OUT3 GPIO1 - - EMAC_RXD2 3 -

2 GPIO2 GPIO2 HSPIWP GPIO2 HS2_DATA0 SD_DATA0 - 2 R

3 U0RXD U0RXD CLK_OUT2 GPIO3 - - - 3 -

4 GPIO4 GPIO4 HSPIHD GPIO4 HS2_DATA1 SD_DATA1 EMAC_TX_ER 2 R

5 GPIO5 GPIO5 VSPICS0 GPIO5 HS1_DATA6 - EMAC_RX_CLK 3 -

6 SD_CLK SD_CLK SPICLK GPIO6 HS1_CLK U1CTS - 3 -

7 SD_DATA_0 SD_DATA0 SPIQ GPIO7 HS1_DATA0 U2RTS - 3 -

8 SD_DATA_1 SD_DATA1 SPID GPIO8 HS1_DATA1 U2CTS - 3 -

9 SD_DATA_2 SD_DATA2 SPIHD GPIO9 HS1_DATA2 U1RXD - 3 -

10 SD_DATA_3 SD_DATA3 SPIWP GPIO10 HS1_DATA3 U1TXD - 3 -

11 SD_CMD SD_CMD SPICS0 GPIO11 HS1_CMD U1RTS - 3 -

12 MTDI MTDI HSPIQ GPIO12 HS2_DATA2 SD_DATA2 EMAC_TXD3 2 R

Espressif Systems 49 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

GPIO Pad Name Function 1 Function 2 Function 3 Function 4 Function 5 Function 6 Reset Notes

13 MTCK MTCK HSPID GPIO13 HS2_DATA3 SD_DATA3 EMAC_RX_ER 1 R

14 MTMS MTMS HSPICLK GPIO14 HS2_CLK SD_CLK EMAC_TXD2 1 R

15 MTDO MTDO HSPICS0 GPIO15 HS2_CMD SD_CMD EMAC_RXD3 3 R

16 GPIO16 GPIO16 - GPIO16 HS1_DATA4 U2RXD EMAC_CLK_OUT 1 -

17 GPIO17 GPIO17 - GPIO17 HS1_DATA5 U2TXD EMAC_CLK_180 1 -

18 GPIO18 GPIO18 VSPICLK GPIO18 HS1_DATA7 - - 1 -

19 GPIO19 GPIO19 VSPIQ GPIO19 U0CTS - EMAC_TXD0 1 -

20 GPIO20 GPIO20 - GPIO20 - - - 1 -

21 GPIO21 GPIO21 VSPIHD GPIO21 - - EMAC_TX_EN 1 -

22 GPIO22 GPIO22 VSPIWP GPIO22 U0RTS - EMAC_TXD1 1 -

23 GPIO23 GPIO23 VSPID GPIO23 HS1_STROBE - - 1 -

25 GPIO25 GPIO25 - GPIO25 - - EMAC_RXD0 0 R

26 GPIO26 GPIO26 - GPIO26 - - EMAC_RXD1 0 R

27 GPIO27 GPIO27 - GPIO27 - - EMAC_RX_DV 1 R

32 32K_XP GPIO32 - GPIO32 - - - 0 R

33 32K_XN GPIO33 - GPIO33 - - - 0 R

34 VDET_1 GPIO34 - GPIO34 - - - 0 R, I

35 VDET_2 GPIO35 - GPIO35 - - - 0 R, I

36 SENSOR_VP GPIO36 - GPIO36 - - - 0 R, I

37 SENSOR_CAPP GPIO37 - GPIO37 - - - 0 R, I

38 SENSOR_CAPN GPIO38 - GPIO38 - - - 0 R, I

39 SENSOR_VN GPIO39 - GPIO39 - - - 0 R, I

Reset Configurations

”Reset” column shows each pad’s default configurations after reset:

• 0 - IE=0 (input disabled).

• 1 - IE=1 (input enabled).

• 2 - IE=1, WPD=1 (input enabled, pulldown resistor).

• 3 - IE=1, WPU=1 (input enabled, pullup resistor).

Notes

• R - Pad has RTC/analog functions via RTC_MUX.

• I - Pad can only be configured as input GPIO.

Please refer to the ESP32 Pin Lists in ESP32 Datasheet for more details.

4.11 RTC_MUX Pin List

Table 18 shows the RTC pins and how they correspond to GPIO pads:

Table 18: RTC_MUX Pin Summary

Analog Function
RTC GPIO Num GPIO Num Pad Name

1 2 3

0 36 SENSOR_VP ADC_H ADC1_CH0 -

1 37 SENSOR_CAPP ADC_H ADC1_CH1 -

2 38 SENSOR_CAPN ADC_H ADC1_CH2 -

3 39 SENSOR_VN ADC_H ADC1_CH3 -

4 34 VDET_1 - ADC1_CH6 -

Espressif Systems 50 ESP32 Technical Reference Manual V1.8

http://espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

4. IO_MUX AND GPIO MATRIX

Analog Function
RTC GPIO Num GPIO Num Pad Name

1 2 3

5 35 VDET_2 - ADC1_CH7 -

6 25 GPIO25 DAC_1 ADC2_CH8 -

7 26 GPIO26 DAC_2 ADC2_CH9 -

8 33 32K_XN XTAL_32K_N ADC1_CH5 TOUCH8

9 32 32K_XP XTAL_32K_P ADC1_CH4 TOUCH9

10 4 GPIO4 - ADC2_CH0 TOUCH0

11 0 GPIO0 - ADC2_CH1 TOUCH1

12 2 GPIO2 - ADC2_CH2 TOUCH2

13 15 MTDO - ADC2_CH3 TOUCH3

14 13 MTCK - ADC2_CH4 TOUCH4

15 12 MTDI - ADC2_CH5 TOUCH5

16 14 MTMS - ADC2_CH6 TOUCH6

17 27 GPIO27 - ADC2_CH7 TOUCH7

4.12 Register Summary

Name Description Address Access

GPIO_OUT_REG GPIO 0-31 output register_REG 0x3FF44004 R/W

GPIO_OUT_W1TS_REG GPIO 0-31 output register_W1TS_REG 0x3FF44008 WO

GPIO_OUT_W1TC_REG GPIO 0-31 output register_W1TC_REG 0x3FF4400C WO

GPIO_OUT1_REG GPIO 32-39 output register_REG 0x3FF44010 R/W

GPIO_OUT1_W1TS_REG GPIO 32-39 output bit set register_REG 0x3FF44014 WO

GPIO_OUT1_W1TC_REG GPIO 32-39 output bit clear register_REG 0x3FF44018 WO

GPIO_ENABLE_REG GPIO 0-31 output enable register_REG 0x3FF44020 R/W

GPIO_ENABLE_W1TS_REG GPIO 0-31 output enable register_W1TS_REG 0x3FF44024 WO

GPIO_ENABLE_W1TC_REG GPIO 0-31 output enable register_W1TC_REG 0x3FF44028 WO

GPIO_ENABLE1_REG GPIO 32-39 output enable register_REG 0x3FF4402C R/W

GPIO_ENABLE1_W1TS_REG GPIO 32-39 output enable bit set register_REG 0x3FF44030 WO

GPIO_ENABLE1_W1TC_REG GPIO 32-39 output enable bit clear register_REG 0x3FF44034 WO

GPIO_STRAP_REG Bootstrap pin value register_REG 0x3FF44038 RO

GPIO_IN_REG GPIO 0-31 input register_REG 0x3FF4403C RO

GPIO_IN1_REG GPIO 32-39 input register_REG 0x3FF44040 RO

GPIO_STATUS_REG GPIO 0-31 interrupt status register_REG 0x3FF44044 R/W

GPIO_STATUS_W1TS_REG GPIO 0-31 interrupt status register_W1TS_REG 0x3FF44048 WO

GPIO_STATUS_W1TC_REG GPIO 0-31 interrupt status register_W1TC_REG 0x3FF4404C WO

GPIO_STATUS1_REG GPIO 32-39 interrupt status register1_REG 0x3FF44050 R/W

GPIO_STATUS1_W1TS_REG GPIO 32-39 interrupt status bit set register_REG 0x3FF44054 WO

GPIO_STATUS1_W1TC_REG GPIO 32-39 interrupt status bit clear register_REG 0x3FF44058 WO

GPIO_ACPU_INT_REG GPIO 0-31 APP_CPU interrupt status_REG 0x3FF44060 RO

GPIO_ACPU_NMI_INT_REG
GPIO 0-31 APP_CPU non-maskable interrupt sta-

tus_REG
0x3FF44064 RO

GPIO_PCPU_INT_REG GPIO 0-31 PRO_CPU interrupt status_REG 0x3FF44068 RO

Espressif Systems 51 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Name Description Address Access

GPIO_PCPU_NMI_INT_REG
GPIO 0-31 PRO_CPU non-maskable interrupt sta-

tus_REG
0x3FF4406C RO

GPIO_ACPU_INT1_REG GPIO 32-39 APP_CPU interrupt status_REG 0x3FF44074 RO

GPIO_ACPU_NMI_INT1_REG
GPIO 32-39 APP_CPU non-maskable interrupt

status_REG
0x3FF44078 RO

GPIO_PCPU_INT1_REG GPIO 32-39 PRO_CPU interrupt status_REG 0x3FF4407C RO

GPIO_PCPU_NMI_INT1_REG
GPIO 32-39 PRO_CPU non-maskable interrupt

status_REG
0x3FF44080 RO

GPIO_PIN0_REG Configuration for GPIO pin 0_REG 0x3FF44088 R/W

GPIO_PIN1_REG Configuration for GPIO pin 1_REG 0x3FF4408C R/W

GPIO_PIN2_REG Configuration for GPIO pin 2_REG 0x3FF44090 R/W

... ...

GPIO_PIN38_REG Configuration for GPIO pin 38_REG 0x3FF44120 R/W

GPIO_PIN39_REG Configuration for GPIO pin 39_REG 0x3FF44124 R/W

GPIO_FUNC0_IN_SEL_CFG_REG Peripheral function 0 input selection register_REG 0x3FF44130 R/W

GPIO_FUNC1_IN_SEL_CFG_REG Peripheral function 1 input selection register_REG 0x3FF44134 R/W

... ...

GPIO_FUNC254_IN_SEL_CFG_REG
Peripheral function 254 input selection regis-

ter_REG
0x3FF44528 R/W

GPIO_FUNC255_IN_SEL_CFG_REG
Peripheral function 255 input selection regis-

ter_REG
0x3FF4452C R/W

GPIO_FUNC0_OUT_SEL_CFG_REG Peripheral output selection for GPIO 0_REG 0x3FF44530 R/W

GPIO_FUNC1_OUT_SEL_CFG_REG Peripheral output selection for GPIO 1_REG 0x3FF44534 R/W

... ...

GPIO_FUNC38_OUT_SEL_CFG_REG Peripheral output selection for GPIO 38_REG 0x3FF445C8 R/W

GPIO_FUNC39_OUT_SEL_CFG_REG Peripheral output selection for GPIO 39_REG 0x3FF445CC R/W

Name Description Address Access

IO_MUX_PIN_CTRL Clock output configuration register 0x3FF49000 R/W

IO_MUX_GPIO36_REG Configuration register for pad GPIO36 0x3FF49004 R/W

IO_MUX_GPIO37_REG Configuration register for pad GPIO37 0x3FF49008 R/W

IO_MUX_GPIO38_REG Configuration register for pad GPIO38 0x3FF4900C R/W

IO_MUX_GPIO39_REG Configuration register for pad GPIO39 0x3FF49010 R/W

IO_MUX_GPIO34_REG Configuration register for pad GPIO34 0x3FF49014 R/W

IO_MUX_GPIO35_REG Configuration register for pad GPIO35 0x3FF49018 R/W

IO_MUX_GPIO32_REG Configuration register for pad GPIO32 0x3FF4901C R/W

IO_MUX_GPIO33_REG Configuration register for pad GPIO33 0x3FF49020 R/W

IO_MUX_GPIO25_REG Configuration register for pad GPIO25 0x3FF49024 R/W

IO_MUX_GPIO26_REG Configuration register for pad GPIO26 0x3FF49028 R/W

IO_MUX_GPIO27_REG Configuration register for pad GPIO27 0x3FF4902C R/W

IO_MUX_MTMS_REG Configuration register for pad MTMS 0x3FF49030 R/W

IO_MUX_MTDI_REG Configuration register for pad MTDI 0x3FF49034 R/W

IO_MUX_MTCK_REG Configuration register for pad MTCK 0x3FF49038 R/W

IO_MUX_MTDO_REG Configuration register for pad MTDO 0x3FF4903C R/W

Espressif Systems 52 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Name Description Address Access

IO_MUX_GPIO2_REG Configuration register for pad GPIO2 0x3FF49040 R/W

IO_MUX_GPIO0_REG Configuration register for pad GPIO0 0x3FF49044 R/W

IO_MUX_GPIO4_REG Configuration register for pad GPIO4 0x3FF49048 R/W

IO_MUX_GPIO16_REG Configuration register for pad GPIO16 0x3FF4904C R/W

IO_MUX_GPIO17_REG Configuration register for pad GPIO17 0x3FF49050 R/W

IO_MUX_SD_DATA2_REG Configuration register for pad SD_DATA2 0x3FF49054 R/W

IO_MUX_SD_DATA3_REG Configuration register for pad SD_DATA3 0x3FF49058 R/W

IO_MUX_SD_CMD_REG Configuration register for pad SD_CMD 0x3FF4905C R/W

IO_MUX_SD_CLK_REG Configuration register for pad SD_CLK 0x3FF49060 R/W

IO_MUX_SD_DATA0_REG Configuration register for pad SD_DATA0 0x3FF49064 R/W

IO_MUX_SD_DATA1_REG Configuration register for pad SD_DATA1 0x3FF49068 R/W

IO_MUX_GPIO5_REG Configuration register for pad GPIO5 0x3FF4906C R/W

IO_MUX_GPIO18_REG Configuration register for pad GPIO18 0x3FF49070 R/W

IO_MUX_GPIO19_REG Configuration register for pad GPIO19 0x3FF49074 R/W

IO_MUX_GPIO20_REG Configuration register for pad GPIO20 0x3FF49078 R/W

IO_MUX_GPIO21_REG Configuration register for pad GPIO21 0x3FF4907C R/W

IO_MUX_GPIO22_REG Configuration register for pad GPIO22 0x3FF49080 R/W

IO_MUX_U0RXD_REG Configuration register for pad U0RXD 0x3FF49084 R/W

IO_MUX_U0TXD_REG Configuration register for pad U0TXD 0x3FF49088 R/W

IO_MUX_GPIO23_REG Configuration register for pad GPIO23 0x3FF4908C R/W

IO_MUX_GPIO24_REG Configuration register for pad GPIO24 0x3FF49090 R/W

Name Description Address Access

GPIO configuration / data registers

RTCIO_RTC_GPIO_OUT_REG RTC GPIO output register_REG 0x3FF48000 R/W

RTCIO_RTC_GPIO_OUT_W1TS_REG RTC GPIO output bit set register_REG 0x3FF48004 WO

RTCIO_RTC_GPIO_OUT_W1TC_REG RTC GPIO output bit clear register_REG 0x3FF48008 WO

RTCIO_RTC_GPIO_ENABLE_REG RTC GPIO output enable register_REG 0x3FF4800C R/W

RTCIO_RTC_GPIO_ENABLE_W1TS_REG RTC GPIO output enable bit setregister_REG 0x3FF48010 WO

RTCIO_RTC_GPIO_ENABLE_W1TC_REG RTC GPIO output enable bit clear register_REG 0x3FF48014 WO

RTCIO_RTC_GPIO_STATUS_REG RTC GPIO interrupt status register_REG 0x3FF48018 WO

RTCIO_RTC_GPIO_STATUS_W1TS_REG RTC GPIO interrupt status bit set register_REG 0x3FF4801C WO

RTCIO_RTC_GPIO_STATUS_W1TC_REG
RTC GPIO interrupt status bit clear regis-

ter_REG
0x3FF48020 WO

RTCIO_RTC_GPIO_IN_REG RTC GPIO input register_REG 0x3FF48024 RO

RTCIO_RTC_GPIO_PIN0_REG RTC configuration for pin 0_REG 0x3FF48028 R/W

RTCIO_RTC_GPIO_PIN1_REG RTC configuration for pin 1_REG 0x3FF4802C R/W

RTCIO_RTC_GPIO_PIN2_REG RTC configuration for pin 2_REG 0x3FF48030 R/W

RTCIO_RTC_GPIO_PIN3_REG RTC configuration for pin 3_REG 0x3FF48034 R/W

RTCIO_RTC_GPIO_PIN4_REG RTC configuration for pin 4_REG 0x3FF48038 R/W

RTCIO_RTC_GPIO_PIN5_REG RTC configuration for pin 5_REG 0x3FF4803C R/W

RTCIO_RTC_GPIO_PIN6_REG RTC configuration for pin 6_REG 0x3FF48040 R/W

RTCIO_RTC_GPIO_PIN7_REG RTC configuration for pin 7_REG 0x3FF48044 R/W

RTCIO_RTC_GPIO_PIN8_REG RTC configuration for pin 8_REG 0x3FF48048 R/W

Espressif Systems 53 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Name Description Address Access

RTCIO_RTC_GPIO_PIN9_REG RTC configuration for pin 9_REG 0x3FF4804C R/W

RTCIO_RTC_GPIO_PIN10_REG RTC configuration for pin 10_REG 0x3FF48050 R/W

RTCIO_RTC_GPIO_PIN11_REG RTC configuration for pin 11_REG 0x3FF48054 R/W

RTCIO_RTC_GPIO_PIN12_REG RTC configuration for pin 12_REG 0x3FF48058 R/W

RTCIO_RTC_GPIO_PIN13_REG RTC configuration for pin 13_REG 0x3FF4805C R/W

RTCIO_RTC_GPIO_PIN14_REG RTC configuration for pin 14_REG 0x3FF48060 R/W

RTCIO_RTC_GPIO_PIN15_REG RTC configuration for pin 15_REG 0x3FF48064 R/W

RTCIO_RTC_GPIO_PIN16_REG RTC configuration for pin 16_REG 0x3FF48068 R/W

RTCIO_RTC_GPIO_PIN17_REG RTC configuration for pin 17_REG 0x3FF4806C R/W

RTCIO_DIG_PAD_HOLD_REG RTC GPIO hold register_REG 0x3FF48074 R/W

GPIO RTC function configuration registers

RTCIO_HALL_SENS_REG Hall sensor configuration_REG 0x3FF48078 R/W

RTCIO_SENSOR_PADS_REG Sensor pads configuration register_REG 0x3FF4807C R/W

RTCIO_ADC_PAD_REG ADC configuration register_REG 0x3FF48080 R/W

RTCIO_PAD_DAC1_REG DAC1 configuration register_REG 0x3FF48084 R/W

RTCIO_PAD_DAC2_REG DAC2 configuration register_REG 0x3FF48088 R/W

RTCIO_XTAL_32K_PAD_REG 32KHz crystal pads configuration register_REG 0x3FF4808C R/W

RTCIO_TOUCH_CFG_REG Touch sensor configuration register_REG 0x3FF48090 R/W

RTCIO_TOUCH_PAD0_REG Touch pad configuration register_REG 0x3FF48094 R/W

... ...

RTCIO_TOUCH_PAD9_REG Touch pad configuration register_REG 0x3FF480B8 R/W

RTCIO_EXT_WAKEUP0_REG External wake up configuration register_REG 0x3FF480BC R/W

RTCIO_XTL_EXT_CTR_REG Crystal power down enable gpio source_REG 0x3FF480C0 R/W

RTCIO_SAR_I2C_IO_REG RTC I2C pad selection_REG 0x3FF480C4 R/W

Espressif Systems 54 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

4.13 Registers

Register 4.1: GPIO_OUT_REG (0x0004)

x x

31 0

Reset

GPIO_OUT_REG GPIO0-31 output value. (R/W)

Register 4.2: GPIO_OUT_W1TS_REG (0x0008)

x x

31 0

Reset

GPIO_OUT_W1TS_REG GPIO0-31 output set register. For every bit that is 1 in the value written here,

the corresponding bit in GPIO_OUT_REG will be set. (WO)

Register 4.3: GPIO_OUT_W1TC_REG (0x000c)

x x

31 0

Reset

GPIO_OUT_W1TC_REG GPIO0-31 output clear register. For every bit that is 1 in the value written

here, the corresponding bit in GPIO_OUT_REG will be cleared. (WO)

Register 4.4: GPIO_OUT1_REG (0x0010)

(re
se

rve
d)

0 0

31 8

GPIO
_O

UT_
DAT

A

x x x x x x x x

7 0

Reset

GPIO_OUT_DATA GPIO32-39 output value. (R/W)

Espressif Systems 55 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.5: GPIO_OUT1_W1TS_REG (0x0014)

(re
se

rve
d)

0 0

31 8

GPIO
_O

UT_
DAT

A

x x x x x x x x

7 0

Reset

GPIO_OUT_DATA GPIO32-39 output value set register. For every bit that is 1 in the value written

here, the corresponding bit in GPIO_OUT1_DATA will be set. (WO)

Register 4.6: GPIO_OUT1_W1TC_REG (0x0018)

(re
se

rve
d)

0 0

31 8

GPIO
_O

UT_
DAT

A

x x x x x x x x

7 0

Reset

GPIO_OUT_DATA GPIO32-39 output value clear register. For every bit that is 1 in the value written

here, the corresponding bit in GPIO_OUT1_DATA will be cleared. (WO)

Register 4.7: GPIO_ENABLE_REG (0x0020)

x x

31 0

Reset

GPIO_ENABLE_REG GPIO0-31 output enable. (R/W)

Register 4.8: GPIO_ENABLE_W1TS_REG (0x0024)

x x

31 0

Reset

GPIO_ENABLE_W1TS_REG GPIO0-31 output enable set register. For every bit that is 1 in the value

written here, the corresponding bit in GPIO_ENABLE will be set. (WO)

Register 4.9: GPIO_ENABLE_W1TC_REG (0x0028)

x x

31 0

Reset

GPIO_ENABLE_W1TC_REG GPIO0-31 output enable clear register. For every bit that is 1 in the

value written here, the corresponding bit in GPIO_ENABLE will be cleared. (WO)

Espressif Systems 56 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.10: GPIO_ENABLE1_REG (0x002c)

(re
se

rve
d)

0 0

31 8

GPIO
_E

NABLE
_D

AT
A

x x x x x x x x

7 0

Reset

GPIO_ENABLE_DATA GPIO32-39 output enable. (R/W)

Register 4.11: GPIO_ENABLE1_W1TS_REG (0x0030)

(re
se

rve
d)

0 0

31 8

GPIO
_E

NABLE
_D

AT
A

x x x x x x x x

7 0

Reset

GPIO_ENABLE_DATA GPIO32-39 output enable set register. For every bit that is 1 in the value written

here, the corresponding bit in GPIO_ENABLE1 will be set. (WO)

Register 4.12: GPIO_ENABLE1_W1TC_REG (0x0034)

(re
se

rve
d)

0 0

31 8

GPIO
_E

NABLE
_D

AT
A

x x x x x x x x

7 0

Reset

GPIO_ENABLE_DATA GPIO32-39 output enable clear register. For every bit that is 1 in the value

written here, the corresponding bit in GPIO_ENABLE1 will be cleared. (WO)

Register 4.13: GPIO_STRAP_REG (0x0038)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

GPIO
_S

TR
APPIN

G

x x x x x x x x x x x x x x x x

15 0

Reset

GPIO_STRAPPING GPIO strapping results: Bit5-bit0 of boot_sel_chip[5:0] correspond to MTDI,

GPIO0, GPIO2, GPIO4, MTDO, GPIO5, respectively.

Espressif Systems 57 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.14: GPIO_IN_REG (0x003c)

x x

31 0

Reset

GPIO_IN_REG GPIO0-31 input value. Each bit represents a pad input value, 1 for high level and 0

for low level. (RO)

Register 4.15: GPIO_IN1_REG (0x0040)

(re
se

rve
d)

0 0

31 8

GPIO
_IN

_D
AT

A_N
EXT

x x x x x x x x

7 0

Reset

GPIO_IN_DATA_NEXT GPIO32-39 input value. Each bit represents a pad input value. (RO)

Register 4.16: GPIO_STATUS_REG (0x0044)

x x

31 0

Reset

GPIO_STATUS_REG GPIO0-31 interrupt status register. Each bit can be either of the two interrupt

sources for the two CPUs. The enable bits in GPIO_STATUS_INTERRUPT, corresponding to the

0-4 bits in GPIO_PINn_REG should be set to 1. (R/W)

Register 4.17: GPIO_STATUS_W1TS_REG (0x0048)

x x

31 0

Reset

GPIO_STATUS_W1TS_REG GPIO0-31 interrupt status set register. For every bit that is 1 in the value

written here, the corresponding bit in GPIO_STATUS_INTERRUPT will be set. (WO)

Register 4.18: GPIO_STATUS_W1TC_REG (0x004c)

x x

31 0

Reset

GPIO_STATUS_W1TC_REG GPIO0-31 interrupt status clear register. For every bit that is 1 in the

value written here, the corresponding bit in GPIO_STATUS_INTERRUPT will be cleared. (WO)

Espressif Systems 58 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.19: GPIO_STATUS1_REG (0x0050)

(re
se

rve
d)

0 0

31 8

GPIO
_S

TA
TU

S_IN
TE

RRUPT

x x x x x x x x

7 0

Reset

GPIO_STATUS_INTERRUPT GPIO32-39 interrupt status. (R/W)

Register 4.20: GPIO_STATUS1_W1TS_REG (0x0054)

(re
se

rve
d)

0 0

31 8

GPIO
_S

TA
TU

S_IN
TE

RRUPT

x x x x x x x x

7 0

Reset

GPIO_STATUS_INTERRUPT GPIO32-39 interrupt status set register. For every bit that is 1 in the

value written here, the corresponding bit in GPIO_STATUS_INTERRUPT1 will be set. (WO)

Register 4.21: GPIO_STATUS1_W1TC_REG (0x0058)

(re
se

rve
d)

0 0

31 8

GPIO
_S

TA
TU

S_IN
TE

RRUPT

x x x x x x x x

7 0

Reset

GPIO_STATUS_INTERRUPT GPIO32-39 interrupt status clear register. For every bit that is 1 in the

value written here, the corresponding bit in GPIO_STATUS_INTERRUPT1 will be cleared. (WO)

Register 4.22: GPIO_ACPU_INT_REG (0x0060)

x x

31 0

Reset

GPIO_ACPU_INT_REG GPIO0-31 APP CPU interrupt status. (RO)

Espressif Systems 59 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.23: GPIO_ACPU_NMI_INT_REG (0x0064)

x x

31 0

Reset

GPIO_ACPU_NMI_INT_REG GPIO0-31 APP CPU non-maskable interrupt status. (RO)

Register 4.24: GPIO_PCPU_INT_REG (0x0068)

x x

31 0

Reset

GPIO_PCPU_INT_REG GPIO0-31 PRO CPU interrupt status. (RO)

Register 4.25: GPIO_PCPU_NMI_INT_REG (0x006c)

x x

31 0

Reset

GPIO_PCPU_NMI_INT_REG GPIO0-31 PRO CPU non-maskable interrupt status. (RO)

Register 4.26: GPIO_ACPU_INT1_REG (0x0074)

(re
se

rve
d)

0 0

31 8

GPIO
_A

PPCPU_IN
T

x x x x x x x x

7 0

Reset

GPIO_APPCPU_INT GPIO32-39 APP CPU interrupt status. (RO)

Register 4.27: GPIO_ACPU_NMI_INT1_REG (0x0078)

(re
se

rve
d)

0 0

31 8

GPIO
_A

PPCPU_N
M

I_I
NT

x x x x x x x x

7 0

Reset

GPIO_APPCPU_NMI_INT GPIO32-39 APP CPU non-maskable interrupt status. (RO)

Espressif Systems 60 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.28: GPIO_PCPU_INT1_REG (0x007c)

(re
se

rve
d)

0 0

31 8

GPIO
_P

ROCPU_IN
T

x x x x x x x x

7 0

Reset

GPIO_PROCPU_INT GPIO32-39 PRO CPU interrupt status. (RO)

Register 4.29: GPIO_PCPU_NMI_INT1_REG (0x0080)

(re
se

rve
d)

0 0

31 8

GPIO
_P

ROCPU_N
M

I_I
NT

x x x x x x x x

7 0

Reset

GPIO_PROCPU_NMI_INT GPIO32-39 PRO CPU non-maskable interrupt status. (RO)

Espressif Systems 61 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.30: GPIO_PINn_REG (n: 0-39) (0x88+0x4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

GPIO
_P

IN
n_

IN
T_

ENA

x x x x x

17 13

(re
se

rve
d)

0 0

12 11

GPIO
_P

IN
n_

W
AKEUP_E

NABLE

x

10

GPIO
_P

IN
n_

IN
T_

TY
PE

x x x

9 7

(re
se

rve
d)

0 0 0 0

6 3

GPIO
_P

IN
n_

PA
D_D

RIVER

x

2

(re
se

rve
d)

0 0

3 2

Reset

GPIO_PINn_INT_ENA Interrupt enable bits for pin n: (R/W)

bit0: APP CPU interrupt enable;

bit1: APP CPU non-maskable interrupt enable;

bit3: PRO CPU interrupt enable;

bit4: PRO CPU non-maskable interrupt enable.

GPIO_PINn_WAKEUP_ENABLE GPIO wake-up enable will only wake up the CPU from Light-sleep.

(R/W)

GPIO_PINn_INT_TYPE Interrupt type selection: (R/W)

0: GPIO interrupt disable;

1: rising edge trigger;

2: falling edge trigger;

3: any edge trigger;

4: low level trigger;

5: high level trigger.

GPIO_PINn_PAD_DRIVER 0: normal output; 1: open drain output. (R/W)

Register 4.31: GPIO_FUNCm_IN_SEL_CFG_REG (m: 0-255) (0x130+0x4*m)

(re
se

rve
d)

0 0

31 8

GPIO
_S

IG
m_IN

_S
EL

x

7

GPIO
_F

UNCm
_IN

_IN
V_S

EL

x

6

GPIO
_F

UNCm
_IN

_S
EL

x x x x x x

5 0

Reset

GPIO_SIGm_IN_SEL Bypass the GPIO Matrix. 0: route through GPIO Matrix, 1: connect signal

directly to peripheral configured in the IO_MUX. (R/W)

GPIO_FUNCm_IN_INV_SEL Invert the input value. 1: invert; 0: do not invert. (R/W)

GPIO_FUNCm_IN_SEL Selection control for peripheral input m. A value of 0-39 selects which of the

40 GPIO Matrix input pins this signal is connected to, or 0x38 for a constantly high input or 0x30

for a constantly low input. (R/W)

Espressif Systems 62 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.32: GPIO_FUNCn_OUT_SEL_CFG_REG (n: 0-39) (0x530+0x4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

GPIO
_F

UNCn
_O

EN_IN
V_S

EL

x

11

GPIO
_F

UNCn
_O

EN_S
EL

x

10

GPIO
_F

UNCn
_O

UT_
IN

V_S
EL

x

9

GPIO
_F

UNCn
_O

UT_
SEL

x x x x x x x x x

8 0

Reset

GPIO_FUNCn_OEN_INV_SEL 1: Invert the output enable signal; 0: do not invert the output enable

signal. (R/W)

GPIO_FUNCn_OEN_SEL 1: Force the output enable signal to be sourced from bit n of

GPIO_ENABLE_REG; 0: use output enable signal from peripheral. (R/W)

GPIO_FUNCn_OUT_INV_SEL 1: Invert the output value; 0: do not invert the output value. (R/W)

GPIO_FUNCn_OUT_SEL Selection control for GPIO output n. A value of s (0<=s<256)

connects peripheral output s to GPIO output n. A value of 256 selects bit n of

GPIO_OUT_REG/GPIO_OUT1_REG and GPIO_ENABLE_REG/GPIO_ENABLE1_REG as the out-

put value and output enable. (R/W)

Register 4.33: IO_MUX_PIN_CTRL (0x3FF49000)

(re
se

rve
d)

0x0

31 12

PIN
_C

TR
L_

CLK
3

0x0

11 8

PIN
_C

TR
L_

CLK
2

0x0

6 3

PIN
_C

TR
L_

CLK
1

0x0

3 0

Reset

For the configuration of I2S0 peripheral clock output: When PIN_CTRL[3:0] = 0x0, select and

output module clock on the CLK_OUT1 in the IO_MUX Pad Summary;

When PIN_CTRL[3:0] = 0x0 and PIN_CTRL[7:4] = 0x0, select and output module clock on the

CLK_OUT2 in the IO_MUX Pad Summary;

When PIN_CTRL[3:0] = 0x0 and PIN_CTRL[11:8] = 0x0; select and output module clock on the

CLK_OUT3 in the IO_MUX Pad Summary.

For the configuration of I2S1 peripheral clock output: When PIN_CTRL[3:0] = 0xF, select and

output module clock on CLK_OUT1-3. (R/W)

Espressif Systems 63 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.34: IO_MUX_x_REG (x: GPIO0-GPIO39) (0x10+4*x)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 15

IO
_x

_M
CU_S

EL

0x0

14 12

IO
_x

_F
UNC_D

RV

0x2

11 10

IO
_x

_F
UNC_IE

0

9

IO
_x

_F
UNC_W

PU

0

8

IO
_x

_F
UNC_W

PD

0

7

IO
_x

_M
CU_D

RV

0x0

6 5

IO
_x

_M
CU_IE

0

4

IO
_x

_M
CU_W

PU

0

3

IO
_x

_M
CU_W

PD

0

2

IO
_x

_S
LP

_S
EL

0

1

IO
_x

_M
CU_O

E

0

0

Reset

IO_x_MCU_SEL Select the IO_MUX function for this signal. 0 selects Function 1, 1 selects Function

2, etc. (R/W)

IO_x_FUNC_DRV Select the drive strength of the pad. A higher value corresponds with a higher

strength. (R/W)

IO_x_FUNC_IE Input enable of the pad. 1: input enabled; 0: input disabled. (R/W)

IO_x_FUNC_WPU Pull-up enable of the pad. 1: internal pull-up enabled; 0: internal pull-up disabled.

(R/W)

IO_x_FUNC_WPD Pull-down enable of the pad. 1: internal pull-down enabled, 0: internal pull-down

disabled. (R/W)

IO_x_MCU_DRV Select the drive strength of the pad during sleep mode. A higher value corresponds

with a higher strength. (R/W)

IO_x_MCU_IE Input enable of the pad during sleep mode. 1: input enabled; 0: input disabled. (R/W)

IO_x_MCU_WPU Pull-up enable of the pad during sleep mode. 1: internal pull-up enabled; 0: internal

pull-up disabled. (R/W)

IO_x_MCU_WPD Pull-down enable of the pad during sleep mode. 1: internal pull-down enabled; 0:

internal pull-down disabled. (R/W)

IO_x_SLP_SEL Sleep mode selection of this pad. Set to 1 to put the pad in sleep mode. (R/W)

IO_x_MCU_OE Output enable of the pad in sleep mode. 1: enable output; 0: disable output. (R/W)

Register 4.35: RTCIO_RTC_GPIO_OUT_REG (0x0000)

RTC
IO

_R
TC

_G
PIO

_O
UT_

DAT
A

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14

Reset

RTCIO_RTC_GPIO_OUT_DATA GPIO0-17 output register. Bit14 is GPIO[0], bit15 is GPIO[1], etc.

(R/W)

Espressif Systems 64 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.36: RTCIO_RTC_GPIO_OUT_W1TS_REG (0x0001)

RTC
IO

_R
TC

_G
PIO

_O
UT_

DAT
A_W

1T
S

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14

Reset

RTCIO_RTC_GPIO_OUT_DATA_W1TS GPIO0-17 output set register. For every bit that is 1 in the

value written here, the corresponding bit in RTCIO_RTC_GPIO_OUT will be set. (WO)

Register 4.37: RTCIO_RTC_GPIO_OUT_W1TC_REG (0x0002)

RTC
IO

_R
TC

_G
PIO

_O
UT_

DAT
A_W

1T
C

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14

Reset

RTCIO_RTC_GPIO_OUT_DATA_W1TC GPIO0-17 output clear register. For every bit that is 1 in the

value written here, the corresponding bit in RTCIO_RTC_GPIO_OUT will be cleared. (WO)

Register 4.38: RTCIO_RTC_GPIO_ENABLE_REG (0x0003)

RTC
IO

_R
TC

_G
PIO

_E
NABLE

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14

Reset

RTCIO_RTC_GPIO_ENABLE GPIO0-17 output enable. Bit14 is GPIO[0], bit15 is GPIO[1], etc. 1

means this GPIO pad is output. (R/W)

Espressif Systems 65 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.39: RTCIO_RTC_GPIO_ENABLE_W1TS_REG (0x0004)

RTC
IO

_R
TC

_G
PIO

_E
NABLE

_W
1T

S

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14

Reset

RTCIO_RTC_GPIO_ENABLE_W1TS GPIO0-17 output enable set register. For every bit that is 1 in

the value written here, the corresponding bit in RTCIO_RTC_GPIO_ENABLE will be set. (WO)

Register 4.40: RTCIO_RTC_GPIO_ENABLE_W1TC_REG (0x0005)

RTC
IO

_R
TC

_G
PIO

_E
NABLE

_W
1T

C

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14

Reset

RTCIO_RTC_GPIO_ENABLE_W1TC GPIO0-17 output enable clear register. For every bit that is 1 in

the value written here, the corresponding bit in RTCIO_RTC_GPIO_ENABLE will be cleared. (WO)

Register 4.41: RTCIO_RTC_GPIO_STATUS_REG (0x0006)

RTC
IO

_R
TC

_G
PIO

_S
TA

TU
S_IN

T

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14

Reset

RTCIO_RTC_GPIO_STATUS_INT GPIO0-17 interrupt status. Bit14 is GPIO[0], bit15 is GPIO[1],

etc. This register should be used together with RTCIO_RTC_GPIO_PINn_INT_TYPE in RT-

CIO_RTC_GPIO_PINn_REG. 1: corresponding interrupt; 0: no interrupt. (R/W)

Espressif Systems 66 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.42: RTCIO_RTC_GPIO_STATUS_W1TS_REG (0x0007)

RTC
IO

_R
TC

_G
PIO

_S
TA

TU
S_IN

T_
W

1T
S

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14

Reset

RTCIO_RTC_GPIO_STATUS_INT_W1TS GPIO0-17 interrupt set register. For every bit that is 1 in

the value written here, the corresponding bit in RTCIO_RTC_GPIO_STATUS_INT will be set. (WO)

Register 4.43: RTCIO_RTC_GPIO_STATUS_W1TC_REG (0x0008)

RTC
IO

_R
TC

_G
PIO

_S
TA

TU
S_IN

T_
W

1T
C

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14

Reset

RTCIO_RTC_GPIO_STATUS_INT_W1TC GPIO0-17 interrupt clear register. For every bit that is 1 in

the value written here, the corresponding bit in RTCIO_RTC_GPIO_STATUS_INT will be cleared.

(WO)

Register 4.44: RTCIO_RTC_GPIO_IN_REG (0x0009)

RTC
IO

_R
TC

_G
PIO

_IN
_N

EXT

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14

Reset

RTCIO_RTC_GPIO_IN_NEXT GPIO0-17 input value. Bit14 is GPIO[0], bit15 is GPIO[1], etc. Each

bit represents a pad input value, 1 for high level, and 0 for low level. (RO)

Espressif Systems 67 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.45: RTCIO_RTC_GPIO_PINn_REG (n: 0-17) (0xA+1*n)

(re
se

rve
d)

0 0

31 11

RTC
IO

_R
TC

_G
PIO

_P
IN
n_

W
AKEUP_E

NABLE

x

10

RTC
IO

_R
TC

_G
PIO

_P
IN
n_

IN
T_

TY
PE

x x x

9 7

(re
se

rve
d)

0 0 0 0

6 3

RTC
IO

_R
TC

_G
PIO

_P
IN
n_

PA
D_D

RIVER

x

2

(re
se

rve
d)

0 0

3 2

Reset

RTCIO_RTC_GPIO_PINn_WAKEUP_ENABLE GPIO wake-up enable. This will only wake up the

ESP32 from Light-sleep. (R/W)

RTCIO_RTC_GPIO_PINn_INT_TYPE GPIO interrupt type selection. (R/W)

0: GPIO interrupt disable;

1: rising edge trigger;

2: falling edge trigger;

3: any edge trigger;

4: low level trigger;

5: high level trigger.

RTCIO_RTC_GPIO_PINn_PAD_DRIVER Pad driver selection. 0: normal output; 1: open drain.

(R/W)

Register 4.46: RTCIO_DIG_PAD_HOLD_REG (0x001d)

0

31 0

Reset

RTCIO_DIG_PAD_HOLD_REG Select which digital pads are on hold. While 0 allows normal opera-

tion, 1 puts the pad on hold. (R/W)

Register 4.47: RTCIO_HALL_SENS_REG (0x001e)

RTC
IO

_H
ALL

_X
PD_H

ALL

0

31

RTC
IO

_H
ALL

_P
HASE

0

30

(re
se

rve
d)

0 0

59 30

Reset

RTCIO_HALL_XPD_HALL Power on hall sensor and connect to VP and VN. (R/W)

RTCIO_HALL_PHASE Reverse the polarity of the hall sensor. (R/W)

Espressif Systems 68 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.48: RTCIO_SENSOR_PADS_REG (0x001f)

RTC
IO

_S
ENSOR_S

ENSE1_
HOLD

0

31

RTC
IO

_S
ENSOR_S

ENSE2_
HOLD

0

30

RTC
IO

_S
ENSOR_S

ENSE3_
HOLD

0

29

RTC
IO

_S
ENSOR_S

ENSE4_
HOLD

0

28

RTC
IO

_S
ENSOR_S

ENSE1_
M

UX_
SEL

0

27

RTC
IO

_S
ENSOR_S

ENSE2_
M

UX_
SEL

0

26

RTC
IO

_S
ENSOR_S

ENSE3_
M

UX_
SEL

0

25

RTC
IO

_S
ENSOR_S

ENSE4_
M

UX_
SEL

0

24

RTC
IO

_S
ENSOR_S

ENSE1_
FU

N_S
EL

0

23 22

RTC
IO

_S
ENSOR_S

ENSE1_
SLP

_S
EL

0

21

RTC
IO

_S
ENSOR_S

ENSE1_
SLP

_IE

0

20

RTC
IO

_S
ENSOR_S

ENSE1_
FU

N_IE

0

19

RTC
IO

_S
ENSOR_S

ENSE2_
FU

N_S
EL

0

18 17

RTC
IO

_S
ENSOR_S

ENSE2_
SLP

_S
EL

0

16

RTC
IO

_S
ENSOR_S

ENSE2_
SLP

_IE

0

15

RTC
IO

_S
ENSOR_S

ENSE2_
FU

N_IE

0

14

RTC
IO

_S
ENSOR_S

ENSE3_
FU

N_S
EL

0

13 12

RTC
IO

_S
ENSOR_S

ENSE3_
SLP

_S
EL

0

11

RTC
IO

_S
ENSOR_S

ENSE3_
SLP

_IE

0

10

RTC
IO

_S
ENSOR_S

ENSE3_
FU

N_IE

0

9

RTC
IO

_S
ENSOR_S

ENSE4_
FU

N_S
EL

0

8 7

RTC
IO

_S
ENSOR_S

ENSE4_
SLP

_S
EL

0

6

RTC
IO

_S
ENSOR_S

ENSE4_
SLP

_IE

0

5

RTC
IO

_S
ENSOR_S

ENSE4_
FU

N_IE

0

4

(re
se

rve
d)

0 0 0 0

7 4

Reset

RTCIO_SENSOR_SENSEn_HOLD Set to 1 to hold the output value on sensen; 0 is for normal op-

eration. (R/W)

RTCIO_SENSOR_SENSEn_MUX_SEL 1: route sensen to the RTC block; 0: route sensen to the

digital IO_MUX. (R/W)

RTCIO_SENSOR_SENSEn_FUN_SEL Select the RTC IO_MUX function for this pad. 0: select Func-

tion 0; 1: select Function 1. (R/W)

RTCIO_SENSOR_SENSEn_SLP_SEL Selection of sleep mode for the pad: set to 1 to put the pad

in sleep mode. (R/W)

RTCIO_SENSOR_SENSEn_SLP_IE Input enable of the pad in sleep mode. 1: enabled; 0: disabled.

(R/W)

RTCIO_SENSOR_SENSEn_FUN_IE Input enable of the pad. 1: enabled; 0: disabled. (R/W)

Espressif Systems 69 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.49: RTCIO_ADC_PAD_REG (0x0020)

RTC
IO

_A
DC_A

DC1_
HOLD

0

31

RTC
IO

_A
DC_A

DC2_
HOLD

0

30

RTC
IO

_A
DC_A

DC1_
M

UX_
SEL

0

29

RTC
IO

_A
DC_A

DC2_
M

UX_
SEL

0

28

RTC
IO

_A
DC_A

DC1_
FU

N_S
EL

0

27 26

RTC
IO

_A
DC_A

DC1_
SLP

_S
EL

0

25

RTC
IO

_A
DC_A

DC1_
SLP

_IE

0

24

RTC
IO

_A
DC_A

DC1_
FU

N_IE

0

23

RTC
IO

_A
DC_A

DC2_
FU

N_S
EL

0

22 21

RTC
IO

_A
DC_A

DC2_
SLP

_S
EL

0

20

RTC
IO

_A
DC_A

DC2_
SLP

_IE

0

19

RTC
IO

_A
DC_A

DC2_
FU

N_IE

0

18

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 18

Reset

RTCIO_ADC_ADCn_HOLD Set to 1 to hold the output value on the pad; 0 is for normal operation.

(R/W)

RTCIO_ADC_ADCn_MUX_SEL 0: route pad to the digital IO_MUX; (R/W)

1: route pad to the RTC block.

RTCIO_ADC_ADCn_FUN_SEL Select the RTC function for this pad. 0: select Function 0; 1: select

Function 1. (R/W)

RTCIO_ADC_ADCn_SLP_SEL Signal selection of pad’s sleep mode. Set this bit to 1 to put the pad

to sleep. (R/W)

RTCIO_ADC_ADCn_SLP_IE Input enable of the pad in sleep mode. 1 enabled; 0 disabled. (R/W)

RTCIO_ADC_ADCn_FUN_IE Input enable of the pad. 1 enabled; 0 disabled. (R/W)

Espressif Systems 70 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.50: RTCIO_PAD_DAC1_REG (0x0021)

RTC
IO

_P
AD_P

DAC1_
DRV

2

31 30

RTC
IO

_P
AD_P

DAC1_
HOLD

0

29

RTC
IO

_P
AD_P

DAC1_
RDE

0

28

RTC
IO

_P
AD_P

DAC1_
RUE

0

27

RTC
IO

_P
AD_P

DAC1_
DAC

0

26 19

RTC
IO

_P
AD_P

DAC1_
XP

D_D
AC

0

18

RTC
IO

_P
AD_P

DAC1_
M

UX_
SEL

0

17

RTC
IO

_P
AD_P

DAC1_
FU

N_S
EL

0

16 15

RTC
IO

_P
AD_P

DAC1_
SLP

_S
EL

0

14

RTC
IO

_P
AD_P

DAC1_
SLP

_IE

0

13

RTC
IO

_P
AD_P

DAC1_
SLP

_O
E

0

12

RTC
IO

_P
AD_P

DAC1_
FU

N_IE

0

11

RTC
IO

_P
AD_P

DAC1_
DAC_X

PD_F
ORCE

0

10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

19 10

Reset

RTCIO_PAD_PDAC1_DRV Select the drive strength of the pad. (R/W)

RTCIO_PAD_PDAC1_HOLD Set to 1 to hold the output value on the pad; set to 0 for normal oper-

ation. (R/W)

RTCIO_PAD_PDAC1_RDE 1: Pull-down on pad enabled; 0: Pull-down disabled. (R/W)

RTCIO_PAD_PDAC1_RUE 1: Pull-up on pad enabled; 0: Pull-up disabled. (R/W)

RTCIO_PAD_PDAC1_DAC PAD DAC1 output value. (R/W)

RTCIO_PAD_PDAC1_XPD_DAC Power on DAC1. Usually, PDAC1 needs to be tristated if we power

on the DAC, i.e. IE=0, OE=0, RDE=0, RUE=0. (R/W)

RTCIO_PAD_PDAC1_MUX_SEL 0: route pad to the digital IO_MUX; (R/W)

1: route to the RTC block.

RTCIO_PAD_PDAC1_FUN_SEL the functional selection signal of the pad. (R/W)

RTCIO_PAD_PDAC1_SLP_SEL Sleep mode selection signal of the pad. Set this bit to 1 to put the

pad to sleep. (R/W)

RTCIO_PAD_PDAC1_SLP_IE Input enable of the pad in sleep mode. 1: enabled; 0: disabled. (R/W)

RTCIO_PAD_PDAC1_SLP_OE Output enable of the pad. 1: enabled ; 0: disabled. (R/W)

RTCIO_PAD_PDAC1_FUN_IE Input enable of the pad. 1: enabled it; 0: disabled. (R/W)

RTCIO_PAD_PDAC1_DAC_XPD_FORCE Power on DAC1. Usually, we need to tristate PDAC1 if

we power on the DAC, i.e. IE=0, OE=0, RDE=0, RUE=0. (R/W)

Espressif Systems 71 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.51: RTCIO_PAD_DAC2_REG (0x0022)

RTC
IO

_P
AD_P

DAC2_
DRV

2

31 30

RTC
IO

_P
AD_P

DAC2_
HOLD

0

29

RTC
IO

_P
AD_P

DAC2_
RDE

0

28

RTC
IO

_P
AD_P

DAC2_
RUE

0

27

RTC
IO

_P
AD_P

DAC2_
DAC

0

26 19

RTC
IO

_P
AD_P

DAC2_
XP

D_D
AC

0

18

RTC
IO

_P
AD_P

DAC2_
M

UX_
SEL

0

17

RTC
IO

_P
AD_P

DAC2_
FU

N_S
EL

0

16 15

RTC
IO

_P
AD_P

DAC2_
SLP

_S
EL

0

14

RTC
IO

_P
AD_P

DAC2_
SLP

_IE

0

13

RTC
IO

_P
AD_P

DAC2_
SLP

_O
E

0

12

RTC
IO

_P
AD_P

DAC2_
FU

N_IE

0

11

RTC
IO

_P
AD_P

DAC2_
DAC_X

PD_F
ORCE

0

10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

19 10

Reset

RTCIO_PAD_PDAC2_DRV Select the drive strength of the pad. (R/W)

RTCIO_PAD_PDAC2_HOLD Set to 1 to hold the output value on the pad; 0 is for normal operation.

(R/W)

RTCIO_PAD_PDAC2_RDE 1: Pull-down on pad enabled; 0: Pull-down disabled. (R/W)

RTCIO_PAD_PDAC2_RUE 1: Pull-up on pad enabled; 0: Pull-up disabled. (R/W)

RTCIO_PAD_PDAC2_DAC PAD DAC2 output value. (R/W)

RTCIO_PAD_PDAC2_XPD_DAC Power on DAC2. PDAC2 needs to be tristated if we power on the

DAC, i.e. IE=0, OE=0, RDE=0, RUE=0. (R/W)

RTCIO_PAD_PDAC2_MUX_SEL 0: route pad to the digital IO_MUX; (R/W)

1: route to the RTC block.

RTCIO_PAD_PDAC2_FUN_SEL Select the RTC function for this pad. 0: select Function 0; 1: select

Function 1. (R/W)

RTCIO_PAD_PDAC2_SLP_SEL Sleep mode selection signal of the pad. Set this bit to 1 to put the

pad to sleep. (R/W)

RTCIO_PAD_PDAC2_SLP_IE Input enable of the pad in sleep mode. 1: enabled; 0: disabled. (R/W)

RTCIO_PAD_PDAC2_SLP_OE Output enable of the pad. 1: enabled; 0: disabled. (R/W)

RTCIO_PAD_PDAC2_FUN_IE Input enable of the pad. 1: enabled; 0: disabled. (R/W)

RTCIO_PAD_PDAC2_DAC_XPD_FORCE Power on DAC2. Usually, we need to tristate PDAC2 if

we power on the DAC, i.e. IE=0, OE=0, RDE=0, RUE=0. (R/W)

Espressif Systems 72 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.52: RTCIO_XTAL_32K_PAD_REG (0x0023)

RTC
IO

_X
TA

L_
X3

2N
_D

RV

2

31 30

RTC
IO

_X
TA

L_
X3

2N
_H

OLD

0

29

RTC
IO

_X
TA

L_
X3

2N
_R

DE

0

28

RTC
IO

_X
TA

L_
X3

2N
_R

UE

0

27

RTC
IO

_X
TA

L_
X3

2P
_D

RV

2

26 25

RTC
IO

_X
TA

L_
X3

2P
_H

OLD

0

24

RTC
IO

_X
TA

L_
X3

2P
_R

DE

0

23

RTC
IO

_X
TA

L_
X3

2P
_R

UE

0

22

RTC
IO

_X
TA

L_
DAC_X

TA
L_

32
K

0 1

21 20

RTC
IO

_X
TA

L_
XP

D_X
TA

L_
32

K

0

19

RTC
IO

_X
TA

L_
X3

2N
_M

UX_
SEL

0

18

RTC
IO

_X
TA

L_
X3

2P
_M

UX_
SEL

0

17

RTC
IO

_X
TA

L_
X3

2N
_F

UN_S
EL

0

16 15

RTC
IO

_X
TA

L_
X3

2N
_S

LP
_S

EL

0

14

RTC
IO

_X
TA

L_
X3

2N
_S

LP
_IE

0

13

RTC
IO

_X
TA

L_
X3

2N
_S

LP
_O

E

0

12

RTC
IO

_X
TA

L_
X3

2N
_F

UN_IE

0

11

RTC
IO

_X
TA

L_
X3

2P
_F

UN_S
EL

0

10 9

RTC
IO

_X
TA

L_
X3

2P
_S

LP
_S

EL

0

8

RTC
IO

_X
TA

L_
X3

2P
_S

LP
_IE

0

7

RTC
IO

_X
TA

L_
X3

2P
_S

LP
_O

E

0

6

RTC
IO

_X
TA

L_
X3

2P
_F

UN_IE

0

5

RTC
IO

_X
TA

L_
DRES_X

TA
L_

32
K

1 0

4 3

RTC
IO

_X
TA

L_
DBIA

S_X
TA

L_
32

K

0 0

2 1

(re
se

rve
d)

0

1

Reset

RTCIO_XTAL_X32N_DRV Select the drive strength of the pad. (R/W)

RTCIO_XTAL_X32N_HOLD Set to 1 to hold the output value on the pad; 0 is for normal operation. (R/W)

RTCIO_XTAL_X32N_RDE 1: Pull-down on pad enabled; 0: Pull-down disabled. (R/W)

RTCIO_XTAL_X32N_RUE 1: Pull-up on pad enabled; 0: Pull-up disabled. (R/W)

RTCIO_XTAL_X32P_DRV Select the drive strength of the pad. (R/W)

RTCIO_XTAL_X32P_HOLD Set to 1 to hold the output value on the pad, 0 is for normal operation. (R/W)

RTCIO_XTAL_X32P_RDE 1: Pull-down on pad enabled; 0: Pull-down disabled. (R/W)

RTCIO_XTAL_X32P_RUE 1: Pull-up on pad enabled; 0: Pull-up disabled. (R/W)

RTCIO_XTAL_DAC_XTAL_32K 32K XTAL bias current DAC value. (R/W)

RTCIO_XTAL_XPD_XTAL_32K Power up 32 KHz crystal oscillator. (R/W)

RTCIO_XTAL_X32N_MUX_SEL 0: route X32N pad to the digital IO_MUX; 1: route to RTC block. (R/W)

RTCIO_XTAL_X32P_MUX_SEL 0: route X32P pad to the digital IO_MUX; 1: route to RTC block. (R/W)

RTCIO_XTAL_X32N_FUN_SEL Select the RTC function. 0: select function 0; 1: select function 1. (R/W)

RTCIO_XTAL_X32N_SLP_SEL Sleep mode selection. Set this bit to 1 to put the pad to sleep. (R/W)

RTCIO_XTAL_X32N_SLP_IE Input enable of the pad in sleep mode. 1: enabled; 0: disabled. (R/W)

RTCIO_XTAL_X32N_SLP_OE Output enable of the pad. 1: enabled; 0; disabled. (R/W)

RTCIO_XTAL_X32N_FUN_IE Input enable of the pad. 1: enabled; 0: disabled. (R/W)

RTCIO_XTAL_X32P_FUN_SEL Select the RTC function. 0: select function 0; 1: select function 1. (R/W)

RTCIO_XTAL_X32P_SLP_SEL Sleep mode selection. Set this bit to 1 to put the pad to sleep. (R/W)

RTCIO_XTAL_X32P_SLP_IE Input enable of the pad in sleep mode. 1: enabled; 0: disabled. (R/W)

RTCIO_XTAL_X32P_SLP_OE Output enable of the pad in sleep mode. 1: enabled; 0: disabled. (R/W)

RTCIO_XTAL_X32P_FUN_IE Input enable of the pad. 1: enabled; 0: disabled. (R/W)

RTCIO_XTAL_DRES_XTAL_32K 32K XTAL resistor bias control. (R/W)

RTCIO_XTAL_DBIAS_XTAL_32K 32K XTAL self-bias reference control. (R/W)

Espressif Systems 73 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.53: RTCIO_TOUCH_CFG_REG (0x0024)

RTC
IO

_T
OUCH_X

PD_B
IA

S

0

31

RTC
IO

_T
OUCH_D

REFH

1 1

30 29

RTC
IO

_T
OUCH_D

REFL

0 0

28 27

RTC
IO

_T
OUCH_D

RANGE

1 1

26 25

RTC
IO

_T
OUCH_D

CUR

0 0

24 23

(re
se

rve
d)

0 0

45 23

Reset

RTCIO_TOUCH_XPD_BIAS Touch sensor bias power on bit. 1: power on; 0: disabled. (R/W)

RTCIO_TOUCH_DREFH Touch sensor saw wave top voltage. (R/W)

RTCIO_TOUCH_DREFL Touch sensor saw wave bottom voltage. (R/W)

RTCIO_TOUCH_DRANGE Touch sensor saw wave voltage range. (R/W)

RTCIO_TOUCH_DCUR Touch sensor bias current. When BIAS_SLEEP is enabled, this setting is

available. (R/W)

Register 4.54: RTCIO_TOUCH_PADn_REG (n: 0-9) (0x25+1*n)

(re
se

rve
d)

0 0 0 0 0 0

31 26

RTC
IO

_T
OUCH_P

ADn
_D

AC

0x4

25 23

RTC
IO

_T
OUCH_P

ADn
_S

TA
RT

0

22

RTC
IO

_T
OUCH_P

ADn
_T

IE_O
PT

0

21

RTC
IO

_T
OUCH_P

ADn
_X

PD

0

20

RTC
IO

_T
OUCH_P

ADn
_T

O_G
PIO

0

19

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

37 19

Reset

RTCIO_TOUCH_PADn_DAC Touch sensor slope control. 3-bit for each touch pad, defaults to 100.

(R/W)

RTCIO_TOUCH_PADn_START Start touch sensor. (R/W)

RTCIO_TOUCH_PADn_TIE_OPT Default touch sensor tie option. 0: tie low; 1: tie high. (R/W)

RTCIO_TOUCH_PADn_XPD Touch sensor power on. (R/W)

RTCIO_TOUCH_PADn_TO_GPIO Connect the RTC pad input to digital pad input; 0 is available.

(R/W)

Espressif Systems 74 ESP32 Technical Reference Manual V1.8

4. IO_MUX AND GPIO MATRIX

Register 4.55: RTCIO_EXT_WAKEUP0_REG (0x002f)

RTC
IO

_E
XT

_W
AKEUP0_

SEL

0

31 27

(re
se

rve
d)

0 0

53 27

Reset

RTCIO_EXT_WAKEUP0_SEL GPIO[0-17] can be used to wake up the chip when the chip is in the

sleep mode. This register prompts the pad source to wake up the chip when the latter is in

deep/light sleep mode. 0: select GPIO0; 1: select GPIO2, etc. (R/W)

Register 4.56: RTCIO_XTL_EXT_CTR_REG (0x0030)

RTC
IO

_X
TL

_E
XT

_C
TR

_S
EL

0

31 27

(re
se

rve
d)

0 0

53 27

Reset

RTCIO_XTL_EXT_CTR_SEL Select the external crystal power down enable source to get into

sleep mode. 0: select GPIO0; 1: select GPIO2, etc. The input value on this pin XOR RT-

CIO_RTC_EXT_XTAL_CONF_REG[30] is the crystal power down enable signal. (R/W)

Register 4.57: RTCIO_SAR_I2C_IO_REG (0x0031)

RTC
IO

_S
AR_I2

C_S
DA_S

EL

0

31 30

RTC
IO

_S
AR_I2

C_S
CL_

SEL

0

29 28

(re
se

rve
d)

0 0

55 28

Reset

RTCIO_SAR_I2C_SDA_SEL Selects a different pad as the RTC I2C SDA signal. 0: use pad

TOUCH_PAD[1]; 1: use pad TOUCH_PAD[3]. (R/W)

RTCIO_SAR_I2C_SCL_SEL Selects a different pad as the RTC I2C SCL signal. 0: use pad

TOUCH_PAD[1]; 1: use pad TOUCH_PAD[3]. (R/W)

Espressif Systems 75 ESP32 Technical Reference Manual V1.8

5. SPI

5. SPI

5.1 Overview

Figure 10: SPI Architecture

As Figure 10 shows, ESP32 integrates four SPI controllers which can be used to communicate with external

devices that use the SPI protocol. Controller SPI0 is used as a buffer for accessing external memory. Controller

SPI1 can be used as a master. Controllers SPI2 and SPI3 can be configured as either a master or a slave. When

used as a master, each SPI controller can drive multiple CS signals (CS0 ~ CS2) to activate multiple slaves.

Controllers SPI1 ~ SPI3 share two DMA channels.

The SPI signal buses consist of D, Q, CS0-CS2, CLK, WP, and HD signals, as Table 22 shows. Controllers SPI0

and SPI1 share one signal bus through an arbiter; the signals of the shared bus start with ”SPI”. Controllers SPI2

and SPI3 use signal buses starting with ”HSPI” and ”VSPI” respectively. The I/O lines included in the

above-mentioned signal buses can be mapped to pins via either the IO_MUX module or the GPIO matrix. (Please

refer to Chapter IO_MUX for details.)

The SPI controller supports four-line half-duplex and full-duplex communication (MOSI, MISO, CS, and CLK lines)

and three-line-bit half-duplex-only communication (DATA, CS, and CLK lines) in GP-SPI mode. In QSPI mode, a

SPI controller accesses the flash or SRAM by using signal buses D, Q, CS0 ~ CS2, CLK, WP, and HD as a

four-bit parallel SPI bus. The mapping between the GP-SPI signal bus and the QSPI signal bus is shown in Table

22.

Table 22: SPI Signal and Pin Signal Function Mapping

Four-line GP-SPI Three-line GP-SPI QSPI Pin function signals

Full-duplex signal

bus

Half-duplex signal

bus

Signal bus SPI signal

bus

HSPI signal

bus

VSPI signal

bus

MOSI DATA D SPID HSPID VSPID

MISO - Q SPIQ HSPIQ VSPIQ

CS CS CS SPICS0 HSPICS0 VSPICS0

CLK CLK CLK SPICLK HSPICLK VSPICLK

- - WP SPIWP HSPIWP VSPIWP

- - HD SPIHD HSPIHD VSPIHD

5.2 SPI Features

General Purpose SPI (GP-SPI)

Espressif Systems 76 ESP32 Technical Reference Manual V1.8

5. SPI

• Programmable data transaction length, in multiples of 1 byte

• Four-line full-duplex communication and three-line half-duplex communication support

• Master mode and slave mode

• Programmable CPOL and CPHA

• Programmable clock

Parallel QSPI

• Communication format support for specific slave devices such as flash

• Programmable communication format

• Six variations of flash-read operations available

• Automatic shift between flash and SRAM access

• Automatic wait states for flash access

SPI DMA Support

• Support for sending and receiving data using linked lists

SPI Interrupt Hardware

• SPI interrupts

• SPI DMA interrupts

5.3 GP-SPI

The SPI1 ~ SPI3 controllers can communicate with other slaves as a standard SPI master. Every SPI master

can be connected to three slaves at most by default. In non-DMA mode, the maximum length of data

received/sent in one burst is 64 bytes. The data length is in multiples of 1 byte.

5.3.1 GP-SPI Master Mode

The SPI master mode supports four-line full-duplex communication and three-line half-duplex communication.

The connections needed for four-line full-duplex communications are outlined in Figure 11.

Figure 11: SPI Master and Slave Full-duplex Communication

For four-line full-duplex communication, the length of received and sent data needs to be set by configuring the

SPI_MISO_DLEN_REG, SPI_MOSI_DLEN_REG registers for master mode as well as

Espressif Systems 77 ESP32 Technical Reference Manual V1.8

5. SPI

SPI_SLV_RDBUF_DLEN_REG, SPI_SLV_WRBUF_DLEN_REG registers for slave mode. The SPI_DOUTDIN bit

and SPI_USR_MOSI bit in register SPI_USER_REG should also be configured. The SPI_USR bit in register

SPI_CMD_REG needs to be configured to initialize data transfer.

If ESP32 SPI is configured as a slave using three-line half-duplex communication, the master-slave

communication should meet a certain communication format. Please refer to 5.3.2.1 for details. For example, if

ESP32 SPI acts as a slave, the communication format should be: command + address + received/sent data. The

address length of the master should be the same as that of the slave; the value of the address should be 0.

The byte order in which ESP32 SPI reads and writes is controlled by the SPI_RD_BYTE_ORDER bit and the

SPI_WR_BYTE_ORDER bit in register SPI_USER_REG. The bit order is controlled by the SPI_RD_BIT_ORDER

bit and the SPI_WR_BIT_ORDER bit in register SPI_CTRL_REG.

5.3.2 GP-SPI Slave Mode

ESP32 SPI2 ~ SPI3 can communicate with other host devices as a slave device. ESP32 SPI should use

particular protocols when acting as a slave. Data received or sent at one time can be no more than 64 bytes

when not using DMA. During a valid read/write process, the appropriate CS signal must be maintained at a low

level. If the CS signal is pulled up during transmission, the internal state of the slave will be reset.

5.3.2.1 Communication Format Supported by GP-SPI Slave

The communication format of ESP32 SPI is: command + address + read/write data. When using half-duplex

communication, the slave read and write operations use fixed hardware commands from which the address part

can not be removed. The command is specified as follows:

1. command: length: 3 ~ 16 bits; Master Out Slave In (MOSI).

2. address: length: 1 ~ 32 bits; Master Out Slave In (MOSI).

3. data read/write: length�0 ~ 512 bits (64 bytes); Master Out Slave In (MOSI) or Master In Slave Out (MISO).

When ESP32 SPI is used as a slave in full-duplex communication, data transaction can be directly initiated

without the master sending command and address. However, please note that the CS should be pulled low at

least one SPI clock period before a read/write process is initiated, and should be pulled high at least one SPI

clock period after the read/write process is completed.

5.3.2.2 Command Definitions Supported by GP-SPI Slave in Half-duplex Mode

The minimum length of a command received by the slave should be three bits. The lowest three bits correspond

to fixed hardware read and write operations as follows:

1. 0x1 (received by slave): Writes data sent by the master into the slave status register via MOSI.

2. 0x2 (received by slave): Writes data sent by the master into the slave data buffer.

3. 0x3 (sent by slave): Sends data in the slave buffer to master via MISO.

4. 0x4 (sent by slave): Sends data in the slave status register to master via MISO.

5. 0x6 (received and then sent by slave): Writes master data on MOSI into data buffer and then sends the

date in the slave data buffer to MISO.

Espressif Systems 78 ESP32 Technical Reference Manual V1.8

5. SPI

The master can write the slave status register SPI_SLV_WR_STATUS_REG, and decide whether to read data from

register SPI_SLV_WR_STATUS_REG or register SPI_RD_STATUS_REG via the SPI_SLV_STATUS_READBACK

bit in the register SPI_SLAVE1_REG. The SPI master can maintain communication with the slave by reading and

writing slave status register, thus realizing relatively complex communication with ease.

5.3.3 GP-SPI Data Buffer

Figure 12: SPI Data Buffer

ESP32 SPI has 16 x 32 bits of data buffer to buffer data-send and data-receive operations. As is shown in Figure

12, received data is written from the low byte of SPI_W0_REG by default and the writing ends with

SPI_W15_REG. If the data length is over 64 bytes, the extra part will be written from SPI_W0_REG.

Data buffer blocks SPI_W0_REG ~ SPI_W7_REG and SPI_W8_REG ~ SPI_W15_REG data correspond to the

lower part and the higher part respectively. They can be used separately, and are controlled by the

SPI_USR_MOSI_HIGHPART bit and the SPI_USR_MISO_HIGHPART bit in register SPI_USER_REG. For

example, if SPI is configured as a master, when SPI_USR_MOSI_HIGHPART = 1,

SPI_W8_REG ~ SPI_W15_REG are used as buffer for sending data; when SPI_USR_MISO_HIGHPART = 1,

SPI_W8_REG ~ SPI_W15_REG are used as buffer for receiving data. If SPI acts as a slave, when

SPI_USR_MOSI_HIGHPART = 1, SPI_W8_REG ~ SPI_W15_REG are used as buffer for receiving data; when

SPI_USR_MISO_HIGHPART = 1, SPI_W8_REG ~ SPI_W15_REG are used as buffer for sending data.

5.4 GP-SPI Clock Control

The maximum output clock frequency of ESP32 GP-SPI master is fapb/2, and the maximum input clock

frequency of the ESP32 GP-SPI slave is fapb/8. The master can derive other clock frequencies via frequency

division.

fspi =
fapb

(SPI_CLKCNT_N+1)(SPI_CLKDIV_PRE+1)

SPI_CLKCNT_N and SPI_CLKDIV_PRE are two bits of register SPI_CLOCK_REG (Please refer to 5.8 Register

Description for details). When the SPI_CLK_EQU_SYSCLK bit in the register SPI_CLOCK_REG is set to 1, and

the other bits are set to 0, SPI output clock frequency is fapb. For other clock frequencies,

SPI_CLK_EQU_SYSCLK needs to be 0.

Espressif Systems 79 ESP32 Technical Reference Manual V1.8

5. SPI

5.4.1 GP-SPI Clock Polarity (CPOL) and Clock Phase (CPHA)

The clock polarity and clock phase of ESP32 SPI are controlled by the SPI_CK_IDLE_EDGE bit in register

SPI_PIN_REG, the SPI_CK_OUT_EDGE bit and the SPI_CK_I_EDGE bit in register SPI_USER_REG, the

SPI_MISO_DELAY_MODE[1:0] bit, the SPI_MISO_DELAY_NUM[2:0] bit, the SPI_MOSI_DELAY_MODE[1:0] bit,

and the SPI_MOSI_DELAY_MUM[2:0] bit in register SPI_CTRL2_REG. Table 23 and Table 24 show the clock

polarity and phase as well as the corresponding register values for ESP32 SPI master and slave,

respectively.

Table 23: Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Master

Registers mode0 mode1 mode2 mode3

SPI_CK_IDLE_EDGE 0 0 1 1

SPI_CK_OUT_EDGE 0 1 1 0

SPI_MISO_DELAY_MODE 2(0) 1(0) 1(0) 2(0)

SPI_MISO_DELAY_NUM 0 0 0 0

SPI_MOSI_DELAY_MODE 0 0 0 0

SPI_MOSI_DELAY_NUM 0 0 0 0

Table 24: Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Slave

Registers mode0 mode1 mode2 mode3

SPI_CK_IDLE_EDGE 0 0 1 1

SPI_CK_I_EDGE 0 1 1 0

SPI_MISO_DELAY_MODE 0 0 0 0

SPI_MISO_DELAY_NUM 0 0 0 0

SPI_MOSI_DELAY_MODE 2 1 1 2

SPI_MOSI_DELAY_NUM 0 0 0 0

1. mode0 means CPOL=0, CPHA=0. When SPI is idle, the clock output is logic low; data change on the

falling edge of the SPI clock and are sampled on the rising edge;

2. mode1 means CPOL=0, CPHA=1. When SPI is idle, the clock output is logic low; data change on the

rising edge of the SPI clock and are sampled on the falling edge;

3. mode2 means when CPOL=1, CPHA=0. When SPI is idle, the clock output is logic high; data change on

the rising edge of the SPI clock and are sampled on the falling edge;

4. mode3 means when CPOL=1, CPHA=1. When SPI is idle, the clock output is logic high; data change on

the falling edge of the SPI clock and are sampled on the rising edge.

5.4.2 GP-SPI Timing

The data signals of ESP32 GP-SPI can be mapped to physical pins via IO_MUX or via IO_MUX and GPIO matrix.

When signals pass through the matrix, they will be delayed by two clkapb clock cycles.

When GP-SPI is used as master and the data signals are not received by the SPI controller via GPIO matrix, if

GP-SPI output clock frequency is not higher than clkapb/2, register SPI_MISO_DELAY_MODE should be set to 0

when configuring the clock polarity. If GP-SPI output clock frequency is not higher than clkapb/4, register

Espressif Systems 80 ESP32 Technical Reference Manual V1.8

5. SPI

SPI_MISO_DELAY_MODE can be set to the corresponding value in Table 23 when configuring the clock

polarity.

When GP-SPI is used in master mode and the data signals enter the SPI controller via the GPIO matrix:

1. If GP-SPI output clock frequency is clkapb/2, register SPI_MISO_DELAY_MODE should be set to 0 and the

dummy state should be enabled (SPI_USR_DUMMY = 1) for one clkspi clock cycle

(SPI_USR_DUMMY_CYCLELEN = 0) when configuring the clock polarity;

2. If GP-SPI output clock frequency is clkapb/4, register SPI_MISO_DELAY_MODE should be set to 0 when

configuring the clock polarity;

3. If GP-SPI output clock frequency is not higher than clkapb/8, register SPI_MISO_DELAY_MODE can be set

to the corresponding value in Table 23 when configuring the clock polarity.

When GP-SPI is used in slave mode, the maximum slave input clock frequency is fapb/8. In addition, the clock

signal and the data signals should be routed to the SPI controller via the same path, i.e., neither the clock signal

nor the data signals enter the SPI controller via the GPIO matrix, or both the clock signal and the data signals

enter the SPI controller via the GPIO matrix. This is important in ensuring that the signals are not delayed by

different time periods before they reach the SPI hardware.

5.5 Parallel QSPI

ESP32 SPI controllers support SPI bus memory devices (such as flash and SRAM). The hardware connection

between the SPI pins and the memories is shown by Figure 13.

Figure 13: Parallel QSPI

SPI1, SPI2 and SPI3 controllers can also be configured as QSPI master to connect to external memory. The

maximum output clock frequency of the SPI memory interface is fapb, with the same clock configuration as that

of the GP-SPI master.

ESP32 QSPI supports flash-read operation in one-line mode, two-line mode, and four-line mode.

Espressif Systems 81 ESP32 Technical Reference Manual V1.8

5. SPI

5.5.1 Communication Format of Parallel QSPI

To support communication with special slave devices, ESP32 QSPI implements a specifically designed

communication protocol. The communication format of ESP32 QSPI master is command + address + read/write

data, as shown in Figure 14, with details as follows:

1. Command: length: 1 ~ 16 bits; Master Out Slave In.

2. Address: length: 0 ~ 64 bits; Master Out Slave In.

3. Data read/write: length: 0 ~ 512 bits (64 bytes); Master Out Slave In or Master In Slave Out.

Figure 14: Communication Format of Parallel QSPI

When ESP32 SPI is configured as a master and communicates with slaves that use the SPI protocol, options

such as command, address, data, etc., can be adjusted as required by the specific application. When ESP32

SPI reads special devices such as Flash and SRAM, a dummy state with a programmable length can be inserted

between the address phase and the data phase.

5.6 GP-SPI Interrupt Hardware

ESP32 SPI generates two types of interrupts. One is the SPI interrupt and the other is the SPI DMA

interrupt.

ESP32 SPI reckons the completion of send and/or receive operations as the completion of one operation from

the controller and generates one interrupt. When ESP32 SPI is configured to slave mode, the slave will generate

read/write status registers and read/write buffer data interrupts according to different operations.

5.6.1 SPI Interrupts

The SPI_*_INTEN bits in the SPI_SLAVE_REG register can be set to enable SPI interrupts. When an SPI interrupt

happens, the interrupt flag in the corresponding SPI_*_DONE register will get set. This flag is writable, and an

interrupt can be cleared by setting the bit to zero.

• SPI_TRANS_DONE_INT: Triggered when a SPI operation is done.

• SPI_SLV_WR_STA_INT: Triggered when a SPI slave status write is done.

• SPI_SLV_RD_STA_INT: Triggered when a SPI slave status read is done.

• SPI_SLV_WR_BUF_INT: Triggered when a SPI slave buffer write is done.

• SPI_SLV_RD_BUD_INT: Triggered when s SPI slave buffer read is done.

Espressif Systems 82 ESP32 Technical Reference Manual V1.8

5. SPI

5.6.2 DMA Interrupts

• SPI_OUT_TOTAL_EOF_INT: Triggered when all linked lists are sent.

• SPI_OUT_EOF_INT: Triggered when one linked list is sent.

• SPI_OUT_DONE_INT: Triggered when the last linked list item has zero length.

• SPI_IN_SUC_EOF_INT: Triggered when all linked lists are received.

• SPI_IN_ERR_EOF_INT: Triggered when there is an error receiving linked lists.

• SPI_IN_DONE_INT: Triggered when the last received linked list had a length of 0.

• SPI_INLINK_DSCR_ERROR_INT: Triggered when the received linked list is invalid.

• SPI_OUTLINK_DSCR_ERROR_INT: Triggered when the linked list to be sent is invalid.

• SPI_INLINK_DSCR_EMPTY_INT: Triggered when no valid linked list is available.

5.7 Register Summary

Name Description SPI0 SPI1 SPI2 SPI3 Acc

Control and configuration registers

SPI_CTRL_REG

Bit order and

QIO/DIO/QOUT/DOUT

mode settings

3FF43008 3FF42008 3FF64008 3FF64008 R/W

SPI_CTRL1_REG
CS delay configura-

tion
3FF4300C 3FF4200C 3FF6400C 3FF6400C R/W

SPI_CTRL2_REG Timing configuration 3FF43014 3FF42014 3FF64014 3FF64014 R/W

SPI_CLOCK_REG Clock configuration 3FF43018 3FF42018 3FF64018 3FF64018 R/W

SPI_PIN_REG
Polarity and CS con-

figuration
3FF43034 3FF42034 3FF64034 3FF64034 R/W

Slave mode configuration registers

SPI_SLAVE_REG

Slave mode config-

uration and interrupt

status

3FF43038 3FF42038 3FF64038 3FF64038 R/W

SPI_SLAVE1_REG Slave data bit lengths 3FF4303C 3FF4203C 3FF6403C 3FF6403C R/W

SPI_SLAVE2_REG
Dummy cycle length

configuration
3FF43040 3FF42040 3FF64040 3FF64040 R/W

SPI_SLAVE3_REG
Read/write sta-

tus/buffer register
3FF43044 3FF42044 3FF64044 3FF64044 R/W

SPI_SLV_WR_STATUS_REG
Slave status/higher

master address
3FF43030 3FF42030 3FF64030 3FF64030 R/W

SPI_SLV_WRBUF_DLEN_REG
Write-buffer opera-

tion length
3FF43048 3FF42048 3FF64048 3FF64048 R/W

SPI_SLV_RDBUF_DLEN_REG
Read-buffer opera-

tion length
3FF4304C 3FF4204C 3FF6404C 3FF6404C R/W

SPI_SLV_RD_BIT_REG
Read data operation

length
3FF43064 3FF42064 3FF64064 3FF64064 R/W

Espressif Systems 83 ESP32 Technical Reference Manual V1.8

5. SPI

User-defined command mode registers

SPI_CMD_REG
Start user-defined

command
3FF43000 3FF42000 3FF64000 3FF64000 R/W

SPI_ADDR_REG Address data 3FF43004 3FF42004 3FF64004 3FF64004 R/W

SPI_USER_REG
User defined com-

mand configuration
3FF4301C 3FF4201C 3FF6401C 3FF6401C R/W

SPI_USER1_REG
Address and dummy

cycle configuration
3FF43020 3FF42020 3FF64020 3FF64020 R/W

SPI_USER2_REG

Command length

and value configura-

tion

3FF43024 3FF42024 3FF64024 3FF64024 R/W

SPI_MOSI_DLEN_REG MOSI length 3FF43028 3FF42028 3FF64028 3FF64028 R/W

SPI_W0_REG SPI data register 0 3FF43080 3FF42080 3FF64080 3FF64080 R/W

SPI_W1_REG SPI data register 1 3FF43084 3FF42084 3FF64084 3FF64084 R/W

SPI_W2_REG SPI data register 2 3FF43088 3FF42088 3FF64088 3FF64088 R/W

SPI_W3_REG SPI data register 3 3FF4308C 3FF4208C 3FF6408C 3FF6408C R/W

SPI_W4_REG SPI data register 4 3FF43090 3FF42090 3FF64090 3FF64090 R/W

SPI_W5_REG SPI data register 5 3FF43094 3FF42094 3FF64094 3FF64094 R/W

SPI_W6_REG SPI data register 6 3FF43098 3FF42098 3FF64098 3FF64098 R/W

SPI_W7_REG SPI data register 7 3FF4309C 3FF4209C 3FF6409C 3FF6409C R/W

SPI_W8_REG SPI data register 8 3FF430A0 3FF420A0 3FF640A0 3FF640A0 R/W

SPI_W9_REG SPI data register 9 3FF430A4 3FF420A4 3FF640A4 3FF640A4 R/W

SPI_W10_REG SPI data register 10 3FF430A8 3FF420A8 3FF640A8 3FF640A8 R/W

SPI_W11_REG SPI data register 11 3FF430AC 3FF420AC 3FF640AC 3FF640AC R/W

SPI_W12_REG SPI data register 12 3FF430B0 3FF420B0 3FF640B0 3FF640B0 R/W

SPI_W13_REG SPI data register 13 3FF430B4 3FF420B4 3FF640B4 3FF640B4 R/W

SPI_W14_REG SPI data register 14 3FF430B8 3FF420B8 3FF640B8 3FF640B8 R/W

SPI_W15_REG SPI data register 15 3FF430BC 3FF420BC 3FF640BC 3FF640BC R/W

SPI_TX_CRC_REG
CRC32 of 256 bits of

data (SPI1 only)
3FF430C0 3FF420C0 3FF640C0 3FF640C0 R/W

Status registers

SPI_RD_STATUS_REG
Slave status and fast

read mode
3FF43010 3FF42010 3FF64010 3FF64010 R/W

DMA configuration registers

SPI_DMA_CONF_REG
DMA configuration

register
3FF43100 3FF42100 3FF64100 3FF64100 R/W

SPI_DMA_OUT_LINK_REG
DMA outlink address

and configuration
3FF43104 3FF42104 3FF64104 3FF64104 R/W

SPI_DMA_IN_LINK_REG
DMA inlink address

and configuration
3FF43108 3FF42108 3FF64108 3FF64108 R/W

SPI_DMA_STATUS_REG DMA status 3FF4310C 3FF4210C 3FF6410C 3FF6410C RO

SPI_IN_ERR_EOF_DES_ADDR_REG

Descriptor address

where an error

occurs

3FF43120 3FF42120 3FF64120 3FF64120 RO

Espressif Systems 84 ESP32 Technical Reference Manual V1.8

5. SPI

SPI_IN_SUC_EOF_DES_ADDR_REG
Descriptor address

where EOF occurs
3FF43124 3FF42124 3FF64124 3FF64124 RO

SPI_INLINK_DSCR_REG
Current descriptor

pointer
3FF43128 3FF42128 3FF64128 3FF64128 RO

SPI_INLINK_DSCR_BF0_REG
Next descriptor data

pointer
3FF4312C 3FF4212C 3FF6412C 3FF6412C RO

SPI_INLINK_DSCR_BF1_REG
Current descriptor

data pointer
3FF43130 3FF42130 3FF64130 3FF64130 RO

SPI_OUT_EOF_BFR_DES_ADDR_REG

Relative buffer ad-

dress where EOF

occurs

3FF43134 3FF42134 3FF64134 3FF64134 RO

SPI_OUT_EOF_DES_ADDR_REG
Descriptor address

where EOF occurs
3FF43138 3FF42138 3FF64138 3FF64138 RO

SPI_OUTLINK_DSCR_REG
Current descriptor

pointer
3FF4313C 3FF4213C 3FF6413C 3FF6413C RO

SPI_OUTLINK_DSCR_BF0_REG
Next descriptor data

pointer
3FF43140 3FF42140 3FF64140 3FF64140 RO

SPI_OUTLINK_DSCR_BF1_REG
Current descriptor

data pointer
3FF43144 3FF42144 3FF64144 3FF64144 RO

SPI_DMA_RSTATUS_REG
DMA memory read

status
3FF43148 3FF42148 3FF64148 3FF64148 RO

SPI_DMA_TSTATUS_REG
DMA memory write

status
3FF4314C 3FF4214C 3FF6414C 3FF6414C RO

DMA interrupt registers

SPI_DMA_INT_RAW_REG Raw interrupt status 3FF43114 3FF42114 3FF64114 3FF64114 RO

SPI_DMA_INT_ST_REG
Masked interrupt sta-

tus
3FF43118 3FF42118 3FF64118 3FF64118 RO

SPI_DMA_INT_ENA_REG Interrupt enable bits 3FF43110 3FF42110 3FF64110 3FF64110 R/W

SPI_DMA_INT_CLR_REG Interrupt clear bits 3FF4311C 3FF4211C 3FF6411C 3FF6411C R/W

Espressif Systems 85 ESP32 Technical Reference Manual V1.8

5. SPI

5.8 Registers

Register 5.1: SPI_CMD_REG (0x0)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

SPI_U
SR

0

18

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 18

Reset

SPI_USR This bit is used to enable user-defined commands. An operation will be triggered when this

bit is set. The bit will be cleared once the operation is done. (R/W)

Register 5.2: SPI_ADDR_REG (0x4)

0x000000000

31 0

Reset

SPI_ADDR_REG Address to slave or from master. If the address length is bigger than 32 bits,

SPI_SLV_WR_STATUS_REG contains the lower 32 bits while this register contains the higher ad-

dress bits. (R/W)

Espressif Systems 86 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.3: SPI_CTRL_REG (0x8)

(re
se

rve
d)

0 0 0 0 0

31 27

SPI_W
R_B

IT_
ORDER

0

26

SPI_R
D_B

IT_
ORDER

0

25

SPI_F
READ_Q

IO

0

24

SPI_F
READ_D

IO

0

23

(re
se

rve
d)

0

22

SPI_W
P

1

21

SPI_F
READ_Q

UAD

0

20

(re
se

rve
d)

0 0 0 0 0

19 15

SPI_F
READ_D

UAL

0

14

SPI_F
ASTR

D_M
ODE

1

13

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

25 13

Reset

SPI_WR_BIT_ORDER This bit determines the bit order for command, address and MOSI data writes.

1: sends LSB first; 0: sends MSB first. (R/W)

SPI_RD_BIT_ORDER This bit determines the bit order for MOSI data reads. 1: receives LSB first; 0:

receives MSB first. (R/W)

SPI_FREAD_QIO This bit determines whether to use four data lines for address writes and MOSI data

reads or not. 1: enable; 0: disable. (R/W)

SPI_FREAD_DIO This bit determines whether to use two data lines for address writes and MOSI data

reads or not. 1: enable; 0: disable. (R/W)

SPI_WP This bit determines the write-protection signal output when SPI is idle. 1: output high; 0:

output low. (R/W)

SPI_FREAD_QUAD This bit determines whether to use four data lines for MOSI data reads or not. 1:

enable; 0: disable. (R/W)

SPI_FREAD_DUAL This bit determines whether to use two data lines for MOSI data reads or not. 1:

enable; 0: disable. (R/W)

SPI_FASTRD_MODE This bit is used to enable spi_fread_qio, spi_fread_dio, spi_fread_qout, and

spi_fread_dout. 1: enable�0: disable. (R/W)

Register 5.4: SPI_CTRL1_REG (0xC)

SPI_C
S_H

OLD
_D

ELA
Y

0x05

31 28

(re
se

rve
d)

0 0

55 28

Reset

SPI_CS_HOLD_DELAY The number of SPI clock cycles by which the SPI CS signal is delayed. (R/W)

Espressif Systems 87 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.5: SPI_RD_STATUS_REG (0x10)

SPI_S
TA

TU
S_E

XT

0x000

31 24

0x000

23 16

SPI_S
TA

TU
S

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

SPI_STATUS_EXT In slave mode, this is the status for the master to read. (R/W)

SPI_STATUS In slave mode, this is the status for the master to read. (R/W)

Espressif Systems 88 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.6: SPI_CTRL2_REG (0x14)

SPI_C
S_D

ELA
Y_N

UM

0x00

31 28

SPI_C
S_D

ELA
Y_M

ODE

0x0

27 26

SPI_M
OSI_D

ELA
Y_N

UM

0x0

25 23

SPI_M
OSI_D

ELA
Y_M

ODE

0x0

22 21

SPI_M
IS

O_D
ELA

Y_N
UM

0x0

20 18

SPI_M
IS

O_D
ELA

Y_M
ODE

0x0

17 16

SPI_C
K_O

UT_
HIG

H_M
ODE

0x00

15 12

res
er

ve
d

0x00

11 8

SPI_H
OLD

_T
IM

E

0x01

7 4

SPI_S
ETU

P_T
IM

E

0x01

3 0

Reset

SPI_CS_DELAY_NUM The spi_cs signal is delayed by the number of system clock cycles configured

here. (R/W)

SPI_CS_DELAY_MODE This register field determines the way the spi_cs signal is delayed by spi_clk.

(R/W)

0: none.

1: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, spi_cs is delayed by half a cycle, otherwise it

is delayed by one cycle.

2: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, spi_cs is delayed by one cycle, otherwise it is

delayed by half a cycle.

3: the spi_cs signal is delayed by one cycle.

SPI_MOSI_DELAY_NUM The MOSI signals are delayed by the number of system clock cycles con-

figured here. (R/W)

SPI_MOSI_DELAY_MODE This register field determines the way the MOSI signals are delayed by

spi_clk. (R/W)

0: none.

1: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MOSI signals are delayed by half a cycle,

otherwise they are delayed by one cycle.

2: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MOSI signals are delayed by one cycle,

otherwise they are delayed by half a cycle.

3: the MOSI signals are delayed one cycle.

SPI_MISO_DELAY_NUM The MISO signals are delayed by the number of system clock cycles spec-

ified here. (R/W)

SPI_MISO_DELAY_MODE This register field determines the way MISO signals are delayed by spi_clk.

(R/W)

0: none.

1: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MISO signals are delayed by half a cycle,

otherwise they are delayed by one cycle.

2: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MISO signals are delayed by one cycle,

otherwise they are delayed by half a cycle.

3: the MISO signals are delayed by one cycle.

SPI_HOLD_TIME The number of spi_clk cycles by which CS pin signals are delayed. These bits are

used in conjunction with the SPI_CS_HOLD bit. (R/W)

SPI_SETUP_TIME The number of spi_clk cycles for which spi_cs is made active before the SPI data

transaction starts. This register field is used when SPI_CS_SETUP is set. (R/W)

Espressif Systems 89 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.7: SPI_CLOCK_REG (0x18)

SPI_C
LK

_E
QU_S

YSCLK

1

31

SPI_C
LK

DIV_P
RE

0 0 0 0 0 0 0 0 0 0 0 0 0

30 18

SPI_C
LK

CNT_
N

0x03

17 12

SPI_C
LK

CNT_
H

0x01

11 6

SPI_C
LK

CNT_
L

0x03

5 0

Reset

SPI_CLK_EQU_SYSCLK In master mode, when this bit is set to 1, spi_clk is equal to system clock;

when set to 0, spi_clk is divided from system clock. (R/W)

SPI_CLKDIV_PRE In master mode, the value of this register field is the pre-divider value for spi_clk,

minus one. (R/W)

SPI_CLKCNT_N In master mode, this is the divider for spi_clk minus one. The spi_clk frequency is

system_clock/(SPI_CLKDIV_PRE+1)/(SPI_CLKCNT_N+1). (R/W)

SPI_CLKCNT_H For a 50% duty cycle, set this to floor((SPI_CLKCNT_N+1)/2-1). (R/W)

SPI_CLKCNT_L In master mode, this must be equal to SPI_CLKCNT_N. In slave mode this must be

0. (R/W)

Espressif Systems 90 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.8: SPI_USER_REG (0x1C)

SPI_U
SR_C

OM
M

AND

1

31

SPI_U
SR_A

DDR

0

30

SPI_U
SR_D

UM
M

Y

0

29

SPI_U
SR_M

IS
O

0

28

SPI_U
SR_M

OSI

0

27

SPI_U
SR_D

UM
M

Y_ID
LE

0

26

SPI_U
SR_M

OSI_H
IG

HPA
RT

0

25

SPI_U
SR_M

IS
O_H

IG
HPA

RT

0

24

(re
se

rve
d)

0 0 0 0 0 0 0

23 17

SPI_S
IO

0

16

SPI_F
W

RITE
_Q

IO

0

15

SPI_F
W

RITE
_D

IO

0

14

SPI_F
W

RITE
_Q

UAD

0

13

SPI_F
W

RITE
_D

UAL

0

12

SPI_W
R_B

YTE
_O

RDER

0

11

SPI_R
D_B

YTE
_O

RDER

0

10

(re
se

rve
d)

0 0

9 8

SPI_C
K_O

UT_
EDGE

0

7

SPI_C
K_I_

EDGE

1

6

SPI_C
S_S

ETU
P

0

5

SPI_C
S_H

OLD

0

4

(re
se

rve
d)

0 0 0

3 1

SPI_D
OUTD

IN

0

0

Reset

SPI_USR_COMMAND This bit enables the command phase of an operation. (R/W)

SPI_USR_ADDR This bit enables the address phase of an operation. (R/W)

SPI_USR_DUMMY This bit enables the dummy phase of an operation. (R/W)

SPI_USR_MISO This bit enables the read-data phase of an operation. (R/W)

SPI_USR_MOSI This bit enables the write-data phase of an operation. (R/W)

SPI_USR_DUMMY_IDLE The spi_clk signal is disabled in the dummy phase when the bit is set. (R/W)

SPI_USR_MOSI_HIGHPART If set, data written to the device is only read from SPI_W8-SPI_W15 of the SPI buffer. (R/W)

SPI_USR_MISO_HIGHPART If set, data read from the device is only written to SPI_W8-SPI_W15 of the SPI buffer. (R/W)

SPI_SIO Set this bit to enable three-line half-duplex communication where MOSI and MISO signals share the same pin.

(R/W)

SPI_FWRITE_QIO This bit enables the use of four data lines for address and MISO data writes. 1: enable; 0: disable.

(R/W)

SPI_FWRITE_DIO This bit enables the use of two data lines for address and MISO data writes. 1: enable; 0: disable.

(R/W)

SPI_FWRITE_QUAD This bit enables the use of four data lines for MISO data writes. 1: enable; 0: disable. (R/W)

SPI_FWRITE_DUAL This bit determines whether to use two data lines for MISO data writes or not. 1: enable; 0: disable.

(R/W)

SPI_WR_BYTE_ORDER This bit determines the byte-endianness for writing command, address, and MOSI data. 1:

big-endian; 0: litte-endian. (R/W)

SPI_RD_BYTE_ORDER This bit determines the byte-endianness for reading MISO data. 1: big-endian; 0: little_endian.

(R/W)

SPI_CK_OUT_EDGE This bit, combined with SPI_MOSI_DELAY_MODE, sets the MOSI signal delay mode. (R/W)

SPI_CK_I_EDGE In slave mode, the bit is the same as SPI_CK_OUT_EDGE in master mode. It is combined with

SPI_MISO_DELAY_MODE. (R/W)

SPI_CS_SETUP Setting this bit enables a delay between spi_cs being active and starting data transfer, as specified in

SPI_SETUP_TIME. This bit only is valid in half-duplex mode, that is, when SPI_DOUTDIN is not set. (R/W)

SPI_CS_HOLD Setting this bit enables a delay between the end of a transmission and spi_cs being made inactive, as

specified in SPI_HOLD_TIME. (R/W)

SPI_DOUTDIN Set the bit to enable full-duplex communication, meaning that MOSI data is sent out at the same time

MISO data is received. 1: enable; 0: disable. (R/W)

Espressif Systems 91 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.9: SPI_USER1_REG (0x20)

SPI_U
SR_A

DDR_B
ITL

EN

23

31 26

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 8

SPI_U
SR_D

UM
M

Y_C
YCLE

LE
N

7

7 0

Reset

SPI_USR_ADDR_BITLEN The bit length of the address phase minus one. (RO)

SPI_USR_DUMMY_CYCLELEN The number of spi_clk cycles for the dummy phase, minus one.

(R/W)

Register 5.10: SPI_USER2_REG (0x24)

SPI_U
SR_C

OM
M

AND_B
ITL

EN

7

31 28

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

27 16

SPI_U
SR_C

OM
M

AND_V
ALU

E

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

SPI_USR_COMMAND_BITLEN The bit length of the command phase minus one. (R/W)

SPI_USR_COMMAND_VALUE The value of the command. (R/W)

Register 5.11: SPI_MOSI_DLEN_REG (0x28)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

SPI_U
SR_M

OSI_D
BITL

EN

0x0000000

23 0

Reset

SPI_USR_MOSI_DBITLEN The bit length of the data to be written to the device minus one. (R/W)

Espressif Systems 92 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.12: SPI_MISO_DLEN_REG (0x2C)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

SPI_U
SR_M

IS
O_D

BITL
EN

0x0000000

23 0

Reset

SPI_USR_MISO_DBITLEN The bit length of the data to be read from the device, minus one. (R/W)

Register 5.13: SPI_SLV_WR_STATUS_REG (0x30)

0 0

31 0

Reset

SPI_SLV_WR_STATUS_REG In the slave mode this register is the status register for the master to

write into. In the master mode, if the address length is bigger than 32 bits, this register contains

the lower 32 bits. (R/W)

Espressif Systems 93 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.14: SPI_PIN_REG (0x34)

(re
se

rve
d)

0

31

SPI_C
S_K

EEP_A
CTIV

E

0

30

SPI_C
K_ID

LE
_E

DGE

0

29

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 14

SPI_M
ASTE

R_C
K_S

EL

0 0 0

13 11

(re
se

rve
d)

0 0

10 9

SPI_M
ASTE

R_C
S_P

OL

0 0 0 0 0

8 6

SPI_C
K_D

IS

0

5

(re
se

rve
d)

0 0

4 3

SPI_C
S2_

DIS

1

2

SPI_C
S1_

DIS

1

1

SPI_C
S0_

DIS

0

0

Reset

SPI_CS_KEEP_ACTIVE When set, the spi_cs will be kept active even when not in a data transaction.

(R/W)

SPI_CK_IDLE_EDGE The idle state of the spi_clk line. (R/W)

1: the spi_clk line is high when idle;

0: the spi_clk line is low when idle.

SPI_MASTER_CK_SEL This register field contains one bit per spi_cs line. When a bit is set in master

mode, the corresponding spi_cs line is made active and the spi_cs pin outputs spi_clk. (R/W)

SPI_MASTER_CS_POL This register filed selects the polarity of the spi_cs line. It contains one bit

per spi_cs line. Possible values of the bits: (R/W)

0: spi_cs is active-low;

1: spi_cs is active-high.

SPI_CK_DIS When set, output of the spi_clk signal is disabled. (R/W)

SPI_CS2_DIS This bit enables the SPI CS2 pin. 1: disables CS2; 0: spi_cs2 is active during the data

transaction. (R/W)

SPI_CS1_DIS This bit enables the SPI CS1 pin. 1: disables CS1; 0: spi_cs1 is active during the data

transaction (R/W)

SPI_CS0_DIS This bit enables the SPI CS0 pin. 1: disables CS0; 0: spi_cs0 is active during the data

transaction. (R/W)

Espressif Systems 94 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.15: SPI_SLAVE_REG (0x38)

SPI_S
YNC_R

ESET

0

31

SPI_S
LA

VE_M
ODE

0

30

SPI_S
LV

_W
R_R

D_B
UF_

EN

0

29

SPI_S
LV

_W
R_R

D_S
TA

_E
N

0

28

SPI_S
LV

_C
M

D_D
EFIN

E

0

27

SPI_T
RANS_C

NT

0 0 0 0

26 23

SPI_S
LV

_L
AST_

STA
TE

0 0 0

22 20

SPI_S
LV

_L
AST_

COM
M

AND

0 0 0

19 17

(re
se

rve
d)

0 0 0 0 0

16 12

SPI_C
S_I_

M
ODE

0 0

11 10

SPI_T
RANS_IN

TE
N

0

9

SPI_S
LV

_W
R_S

TA
_IN

TE
N

0

8

SPI_S
LV

_R
D_S

TA
_IN

TE
N

0

7

SPI_S
LV

_W
R_B

UF_
IN

TE
N

0

6

SPI_S
LV

_R
D_B

UF_
IN

TE
N

0

5

SPI_T
RANS_D

ONE

0

4

SPI_S
LV

_W
R_S

TA
_D

ONE

0

3

SPI_S
LV

_R
D_S

TA
_D

ONE

0

2

SPI_S
LV

_W
R_B

UF_
DONE

0

1

SPI_S
LV

_R
D_B

UF_
DONE

0

0

Reset

SPI_SYNC_RESET This bit is used to enable software reset. When set, it resets the latched values of the SPI

clock line, cs line and data lines. (R/W)

SPI_SLAVE_MODE This bit is used to set the mode of the SPI device. (R/W)

1: slave mode;

0: master mode.

SPI_SLV_WR_RD_BUF_EN Setting this bit enables the write and read buffer commands in slave mode. (R/W)

SPI_SLV_WR_RD_STA_EN Setting this bit enables the write and read status commands in slave mode. (R/W)

SPI_SLV_CMD_DEFINE This bit is used to enable custom slave mode commands. (R/W)

1: slave mode commands are defined in SPI_SLAVE3.

0: slave mode commands are fixed as: 0x1: write-status; 0x2: write-buffer, 0x3: read-buffer; and 0x4:

read-status.

SPI_TRANS_CNT The counter for operations in both the master mode and the slave mode. (RO)

SPI_SLV_LAST_STATE In slave mode, this contains the state of the SPI state machine. (RO)

SPI_SLV_LAST_COMMAND In slave mode, this contains the value of the received command. (RO)

SPI_CS_I_MODE In the slave mode, this selects the mode to synchronize the input SPI cs signal and eliminate

SPI cs jitter. (R/W)

0: configured through registers (SPI_CS_DELAY_NUM and SPI_CS_DELAY_MODE);

1: using double synchronization method and configured through registers (SPI_CS_DELAY_NUM and

SPI_CS_DELAY_MODE);

2: using double synchronization method.

SPI_TRANS_INTEN The interrupt enable bit for the SPI_TRANS_DONE_INT interrupt. (R/W)

SPI_SLV_WR_STA_INTEN The interrupt enable bit for the SPI_SLV_WR_STA_INT interrupt. (R/W)

SPI_SLV_RD_STA_INTEN The interrupt enable bit for the SPI_SLV_RD_STA_INT interrupt. (R/W)

SPI_SLV_WR_BUF_INTEN The interrupt enable bit for the SPI_SLV_WR_BUF_INT interrupt. (R/W)

SPI_SLV_RD_BUF_INTEN The interrupt enable bit for the SPI_SLV_RD_BUF_INT interrupt. (R/W)

SPI_TRANS_DONE The raw interrupt status bit for the SPI_TRANS_DONE_INT interrupt. (R/W)

SPI_SLV_WR_STA_DONE The raw interrupt status bit for the SPI_SLV_WR_STA_INT interrupt. (R/W)

SPI_SLV_RD_STA_DONE The raw interrupt status bit for the SPI_SLV_RD_STA_INT interrupt. (R/W)

SPI_SLV_WR_BUF_DONE The raw interrupt status bit for the SPI_SLV_WR_BUF_INT interrupt. (R/W)

SPI_SLV_RD_BUF_DONE The raw interrupt status bit for the SPI_SLV_RD_BUF_INT interrupt. (R/W)

Espressif Systems 95 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.16: SPI_SLAVE1_REG (0x3C)

SPI_S
LV

_S
TA

TU
S_B

ITL
EN

0 0 0 0 0

31 27

SPI_S
LV

_S
TA

TU
S_F

AST_
EN

0

26

SPI_S
LV

_S
TA

TU
S_R

EADBACK

1

25

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

24 16

SPI_S
LV

_R
D_A

DDR_B
ITL

EN

0x00

15 10

SPI_S
LV

_W
R_A

DDR_B
ITL

EN

0x00

9 4

SPI_S
LV

_W
RSTA

_D
UM

M
Y_E

N

0

3

SPI_S
LV

_R
DSTA

_D
UM

M
Y_E

N

0

2

SPI_S
LV

_W
RBUF_

DUM
M

Y_E
N

0

1

SPI_S
LV

_R
DBUF_

DUM
M

Y_E
N

0

0

Reset

SPI_SLV_STATUS_BITLEN In slave mode, this sets the length of the status field. (R/W)

SPI_SLV_STATUS_FAST_EN In slave mode, this enables fast reads of the status. (R/W)

SPI_SLV_STATUS_READBACK In slave mode, this selects the active status register. (R/W)

1: reads register of SPI_SLV_WR_STATUS;

0: reads register of SPI_RD_STATUS.

SPI_SLV_RD_ADDR_BITLEN In slave mode, this contains the address length in bits for a read-buffer

operation, minus one. (R/W)

SPI_SLV_WR_ADDR_BITLEN In slave mode, this contains the address length in bits for a write-buffer

operation, minus one. (R/W)

SPI_SLV_WRSTA_DUMMY_EN In slave mode, this bit enables the dummy phase for write-status

operations. (R/W)

SPI_SLV_RDSTA_DUMMY_EN In slave mode, this bit enables the dummy phase for read-status

operations. (R/W)

SPI_SLV_WRBUF_DUMMY_EN In slave mode, this bit enables the dummy phase for write-buffer

operations. (R/W)

SPI_SLV_RDBUF_DUMMY_EN In slave mode, this bit enables the dummy phase for read-buffer

operations. (R/W)

Espressif Systems 96 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.17: SPI_SLAVE2_REG (0x40)

SPI_S
LV

_W
RBUF_

DUM
M

Y_C
YCLE

LE
N

0 0 0 0 0 0 0 0

31 24

SPI_S
LV

_R
DBUF_

DUM
M

Y_C
YCLE

LE
N

0x000

23 16

SPI_S
LV

_W
RSTA

_D
UM

M
Y_C

YCLE
LE

N

0x000

15 8

SPI_S
LV

_R
DSTA

_D
UM

M
Y_C

YCLE
LE

N

0x000

7 0

Reset

SPI_SLV_WRBUF_DUMMY_CYCLELEN In slave mode, this contains number of spi_clk cycles for

the dummy phase for write-buffer operations, minus one. (R/W)

SPI_SLV_RDBUF_DUMMY_CYCLELEN In slave mode, this contains the number of spi_clk cycles

for the dummy phase for read-buffer operations, minus one (R/W)

SPI_SLV_WRSTA_DUMMY_CYCLELEN In slave mode, this contains the number of spi_clk cycles

for the dummy phase for write-status operations, minus one. (R/W)

SPI_SLV_RDSTA_DUMMY_CYCLELEN In slave mode, this contains the number of spi_clk cycles

for the dummy phase for read-status operations, minus one. (R/W)

Register 5.18: SPI_SLAVE3_REG (0x44)

SPI_S
LV

_W
RSTA

_C
M

D_V
ALU

E

0 0 0 0 0 0 0 0

31 24

SPI_S
LV

_R
DSTA

_C
M

D_V
ALU

E

0 0 0 0 0 0 0 0

23 16

SPI_S
LV

_W
RBUF_

CM
D_V

ALU
E

0 0 0 0 0 0 0 0

15 8

SPI_S
LV

_R
DBUF_

CM
D_V

ALU
E

0 0 0 0 0 0 0 0

7 0

Reset

SPI_SLV_WRSTA_CMD_VALUE In slave mode, this contains the value of the write-status command.

(R/W)

SPI_SLV_RDSTA_CMD_VALUE In slave mode, this contains the value of the read-status command.

(R/W)

SPI_SLV_WRBUF_CMD_VALUE In slave mode, this contains the value of the write-buffer command.

(R/W)

SPI_SLV_RDBUF_CMD_VALUE In slave mode, this contains the value of the read-buffer command.

(R/W)

Espressif Systems 97 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.19: SPI_SLV_WRBUF_DLEN_REG (0x48)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

SPI_S
LV

_W
RBUF_

DBITL
EN

0x0000000

23 0

Reset

SPI_SLV_WRBUF_DBITLEN This equals to the bit length of data written into the slave buffer, minus

one. (R/W)

Register 5.20: SPI_SLV_RDBUF_DLEN_REG (0x4C)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

SPI_S
LV

_R
DBUF_

DBITL
EN

0x0000000

23 0

Reset

SPI_SLV_RDBUF_DBITLEN This equals to the bit length of data read from the slave buffer, minus

one. (R/W)

Register 5.21: SPI_SLV_RD_BIT_REG (0x64)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

SPI_S
LV

_R
DAT

A_B
IT

0 0

23 0

Reset

SPI_SLV_RDATA_BIT This equals to the bit length of data the master reads from the slave, minus

one. (R/W)

Register 5.22: SPI_Wn_REG (n: 0-15) (0x80+4*n)

0 0

31 0

Reset

SPI_Wn_REG Data buffer. (R/W)

Espressif Systems 98 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.23: SPI_TX_CRC_REG (0xC0)

0 0

31 0

Reset

SPI_TX_CRC_REG For SPI1, this contains the CRC32 value of 256 bits of data. (R/W)

Register 5.24: SPI_EXT2_REG (0xF8)

(re
se

rve
d)

0 0

31 3

SPI_S
T

0 0 0

2 0

Reset

SPI_ST The current state of the SPI state machine: (RO)

0: idle state

1: preparation state

2: send command state

3: send data state

4: read data state

5: write data state

6: wait state

7: done state

Espressif Systems 99 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.25: SPI_DMA_CONF_REG (0x100)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

SPI_D
M

A_C
ONTIN

UE

0

16

SPI_D
M

A_T
X_

STO
P

0

15

SPI_D
M

A_R
X_

STO
P

0

14

(re
se

rve
d)

0

13

SPI_O
UT_

DAT
A_B

URST_
EN

0

12

SPI_I
NDSCR_B

URST_
EN

0

11

SPI_O
UTD

SCR_B
URST_

EN

0

10

SPI_O
UT_

EOF_
M

ODE

1

9

(re
se

rve
d)

0 0 0

8 6

SPI_A
HBM

_R
ST

0

5

SPI_A
HBM

_F
IFO

_R
ST

0

4

SPI_O
UT_

RST

0

3

SPI_I
N_R

ST

0

2

(re
se

rve
d)

0 0

3 2

Reset

SPI_DMA_CONTINUE This bit enables SPI DMA continuous data Tx/Rx mode. (R/W)

SPI_DMA_TX_STOP When in continuous Tx/Rx mode, setting this bit stops sending data. (R/W)

SPI_DMA_RX_STOP When in continuous Tx/Rx mode, setting this bit stops receiving data. (R/W)

SPI_OUT_DATA_BURST_EN SPI DMA reads data from memory in burst mode. (R/W)

SPI_INDSCR_BURST_EN SPI DMA reads descriptor in burst mode when writing data to the memory.

(R/W)

SPI_OUTDSCR_BURST_EN SPI DMA reads descriptor in burst mode when reading data from the

memory. (R/W)

SPI_OUT_EOF_MODE DMA out-EOF-flag generation mode. (R/W)

1: out-EOF-flag is generated when DMA has popped all data from the FIFO;

0: out-EOF-flag is generated when DMA has pushed all data to the FIFO.

SPI_AHBM_RST reset SPI DMA AHB master. (R/W)

SPI_AHBM_FIFO_RST This bit is used to reset SPI DMA AHB master FIFO pointer. (R/W)

SPI_OUT_RST The bit is used to reset DMA out-FSM and out-data FIFO pointer. (R/W)

SPI_IN_RST The bit is used to reset DMA in-DSM and in-data FIFO pointer. (R/W)

Register 5.26: SPI_DMA_OUT_LINK_REG (0x104)

(re
se

rve
d)

0

31

SPI_O
UTL

IN
K_R

ESTA
RT

0

30

SPI_O
UTL

IN
K_S

TA
RT

0

29

SPI_O
UTL

IN
K_S

TO
P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

SPI_O
UTL

IN
K_A

DDR

0x000000

19 0

Reset

SPI_OUTLINK_RESTART Set the bit to add new outlink descriptors. (R/W)

SPI_OUTLINK_START Set the bit to start to use outlink descriptor. (R/W)

SPI_OUTLINK_STOP Set the bit to stop to use outlink descriptor. (R/W)

SPI_OUTLINK_ADDR The address of the first outlink descriptor. (R/W)

Espressif Systems 100 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.27: SPI_DMA_IN_LINK_REG (0x108)

(re
se

rve
d)

0

31

SPI_I
NLIN

K_R
ESTA

RT

0

30

SPI_I
NLIN

K_S
TA

RT

0

29

SPI_I
NLIN

K_S
TO

P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0

27 21

SPI_I
NLIN

K_A
UTO

_R
ET

0

20

SPI_I
NLIN

K_A
DDR

0x000000

19 0

Reset

SPI_INLINK_RESTART Set the bit to add new inlink descriptors. (R/W)

SPI_INLINK_START Set the bit to start to use inlink descriptor. (R/W)

SPI_INLINK_STOP Set the bit to stop to use inlink descriptor. (R/W)

SPI_INLINK_AUTO_RET when the bit is set, inlink descriptor jumps to the next descriptor when a

packet is invalid. (R/W)

SPI_INLINK_ADDR The address of the first inlink descriptor. (R/W)

Register 5.28: SPI_DMA_STATUS_REG (0x10C)

(re
se

rve
d)

0 0

31 2

SPI_D
M

A_T
X_

EN

0

1

SPI_D
M

A_R
X_

EN

0

0

Reset

SPI_DMA_TX_EN SPI DMA write-data status bit. (RO)

SPI_DMA_RX_EN SPI DMA read-data status bit. (RO)

Espressif Systems 101 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.29: SPI_DMA_INT_ENA_REG (0x110)

(re
se

rve
d)

0 0

31 9

SPI_O
UT_

TO
TA

L_
EOF_

IN
T_

ENA

0

8

SPI_O
UT_

EOF_
IN

T_
ENA

0

7

SPI_O
UT_

DONE_IN
T_

ENA

0

6

SPI_I
N_S

UC_E
OF_

IN
T_

ENA

0

5

SPI_I
N_E

RR_E
OF_

IN
T_

ENA

0

4

SPI_I
N_D

ONE_IN
T_

ENA

0

3

SPI_I
NLIN

K_D
SCR_E

RROR_IN
T_

ENA

0

2

SPI_O
UTL

IN
K_D

SCR_E
RROR_IN

T_
ENA

0

1

SPI_I
NLIN

K_D
SCR_E

M
PTY

_IN
T_

ENA

0

0

Reset

SPI_OUT_TOTAL_EOF_INT_ENA The interrupt enable bit for the SPI_OUT_TOTAL_EOF_INT inter-

rupt. (R/W)

SPI_OUT_EOF_INT_ENA The interrupt enable bit for the SPI_OUT_EOF_INT interrupt. (R/W)

SPI_OUT_DONE_INT_ENA The interrupt enable bit for the SPI_OUT_DONE_INT interrupt. (R/W)

SPI_IN_SUC_EOF_INT_ENA The interrupt enable bit for the SPI_IN_SUC_EOF_INT interrupt. (R/W)

SPI_IN_ERR_EOF_INT_ENA The interrupt enable bit for the SPI_IN_ERR_EOF_INT interrupt. (R/W)

SPI_IN_DONE_INT_ENA The interrupt enable bit for the SPI_IN_DONE_INT interrupt. (R/W)

SPI_INLINK_DSCR_ERROR_INT_ENA The interrupt enable bit for the

SPI_INLINK_DSCR_ERROR_INT interrupt. (R/W)

SPI_OUTLINK_DSCR_ERROR_INT_ENA The interrupt enable bit for the

SPI_OUTLINK_DSCR_ERROR_INT interrupt. (R/W)

SPI_INLINK_DSCR_EMPTY_INT_ENA The interrupt enable bit for the

SPI_INLINK_DSCR_EMPTY_INT interrupt. (R/W)

Espressif Systems 102 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.30: SPI_DMA_INT_RAW_REG (0x114)

(re
se

rve
d)

0 0

31 9

SPI_O
UT_

TO
TA

L_
EOF_

IN
T_

RAW

0

8

SPI_O
UT_

EOF_
IN

T_
RAW

0

7

SPI_O
UT_

DONE_IN
T_

RAW

0

6

SPI_I
N_S

UC_E
OF_

IN
T_

RAW

0

5

SPI_I
N_E

RR_E
OF_

IN
T_

RAW

0

4

SPI_I
N_D

ONE_IN
T_

RAW

0

3

SPI_I
NLIN

K_D
SCR_E

RROR_IN
T_

RAW

0

2

SPI_O
UTL

IN
K_D

SCR_E
RROR_IN

T_
RAW

0

1

SPI_I
NLIN

K_D
SCR_E

M
PTY

_IN
T_

RAW

0

0

Reset

SPI_OUT_TOTAL_EOF_INT_RAW The raw interrupt status bit for the SPI_OUT_TOTAL_EOF_INT in-

terrupt. (RO)

SPI_OUT_EOF_INT_RAW The raw interrupt status bit for the SPI_OUT_EOF_INT interrupt. (RO)

SPI_OUT_DONE_INT_RAW The raw interrupt status bit for the SPI_OUT_DONE_INT interrupt. (RO)

SPI_IN_SUC_EOF_INT_RAW The raw interrupt status bit for the SPI_IN_SUC_EOF_INT interrupt.

(RO)

SPI_IN_ERR_EOF_INT_RAW The raw interrupt status bit for the SPI_IN_ERR_EOF_INT interrupt.

(RO)

SPI_IN_DONE_INT_RAW The raw interrupt status bit for the SPI_IN_DONE_INT interrupt. (RO)

SPI_INLINK_DSCR_ERROR_INT_RAW The raw interrupt status bit for the

SPI_INLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_OUTLINK_DSCR_ERROR_INT_RAW The raw interrupt status bit for the

SPI_OUTLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_INLINK_DSCR_EMPTY_INT_RAW The raw interrupt status bit for the

SPI_INLINK_DSCR_EMPTY_INT interrupt. (RO)

Espressif Systems 103 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.31: SPI_DMA_INT_ST_REG (0x118)

(re
se

rve
d)

0 0

31 9

SPI_O
UT_

TO
TA

L_
EOF_

IN
T_

ST

0

8

SPI_O
UT_

EOF_
IN

T_
ST

0

7

SPI_O
UT_

DONE_IN
T_

ST

0

6

SPI_I
N_S

UC_E
OF_

IN
T_

ST

0

5

SPI_I
N_E

RR_E
OF_

IN
T_

ST

0

4

SPI_I
N_D

ONE_IN
T_

ST

0

3

SPI_I
NLIN

K_D
SCR_E

RROR_IN
T_

ST

0

2

SPI_O
UTL

IN
K_D

SCR_E
RROR_IN

T_
ST

0

1

SPI_I
NLIN

K_D
SCR_E

M
PTY

_IN
T_

ST

0

0

Reset

SPI_OUT_TOTAL_EOF_INT_ST The masked interrupt status bit for the

SPI_OUT_TOTAL_EOF_INT interrupt. (RO)

SPI_OUT_EOF_INT_ST The masked interrupt status bit for the

SPI_OUT_EOF_INT interrupt. (RO)

SPI_OUT_DONE_INT_ST The masked interrupt status bit for the SPI_OUT_DONE_INT interrupt.

(RO)

SPI_IN_SUC_EOF_INT_ST The masked interrupt status bit for the SPI_IN_SUC_EOF_INT interrupt.

(RO)

SPI_IN_ERR_EOF_INT_ST The masked interrupt status bit for the SPI_IN_ERR_EOF_INT interrupt.

(RO)

SPI_IN_DONE_INT_ST The masked interrupt status bit for the SPI_IN_DONE_INT interrupt. (RO)

SPI_INLINK_DSCR_ERROR_INT_ST The masked interrupt status bit for the

SPI_INLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_OUTLINK_DSCR_ERROR_INT_ST The masked interrupt status bit for the

SPI_OUTLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_INLINK_DSCR_EMPTY_INT_ST The masked interrupt status bit for the

SPI_INLINK_DSCR_EMPTY_INT interrupt. (RO)

Espressif Systems 104 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.32: SPI_DMA_INT_CLR_REG (0x11C)

(re
se

rve
d)

0 0

31 9

SPI_O
UT_

TO
TA

L_
EOF_

IN
T_

CLR

0

8

SPI_O
UT_

EOF_
IN

T_
CLR

0

7

SPI_O
UT_

DONE_IN
T_

CLR

0

6

SPI_I
N_S

UC_E
OF_

IN
T_

CLR

0

5

SPI_I
N_E

RR_E
OF_

IN
T_

CLR

0

4

SPI_I
N_D

ONE_IN
T_

CLR

0

3

SPI_I
NLIN

K_D
SCR_E

RROR_IN
T_

CLR

0

2

SPI_O
UTL

IN
K_D

SCR_E
RROR_IN

T_
CLR

0

1

SPI_I
NLIN

K_D
SCR_E

M
PTY

_IN
T_

CLR

0

0

Reset

SPI_OUT_TOTAL_EOF_INT_CLR Set this bit to clear the SPI_OUT_TOTAL_EOF_INT interrupt. (R/W)

SPI_OUT_EOF_INT_CLR Set this bit to clear the SPI_OUT_EOF_INT interrupt. (R/W)

SPI_OUT_DONE_INT_CLR Set this bit to clear the SPI_OUT_DONE_INT interrupt. (R/W)

SPI_IN_SUC_EOF_INT_CLR Set this bit to clear the SPI_IN_SUC_EOF_INT interrupt. (R/W)

SPI_IN_ERR_EOF_INT_CLR Set this bit to clear the SPI_IN_ERR_EOF_INT interrupt. (R/W)

SPI_IN_DONE_INT_CLR Set this bit to clear the SPI_IN_DONE_INT interrupt. (R/W)

SPI_INLINK_DSCR_ERROR_INT_CLR Set this bit to clear the SPI_INLINK_DSCR_ERROR_INT in-

terrupt. (R/W)

SPI_OUTLINK_DSCR_ERROR_INT_CLR Set this bit to clear the

SPI_OUTLINK_DSCR_ERROR_INT interrupt. (R/W)

SPI_INLINK_DSCR_EMPTY_INT_CLR Set this bit to clear the SPI_INLINK_DSCR_EMPTY_INT in-

terrupt. (R/W)

Register 5.33: SPI_IN_ERR_EOF_DES_ADDR_REG (0x120)

0 0

31 0

Reset

SPI_IN_ERR_EOF_DES_ADDR_REG The inlink descriptor address when SPI DMA encountered an

error in receiving data. (RO)

Register 5.34: SPI_IN_SUC_EOF_DES_ADDR_REG (0x124)

0 0

31 0

Reset

SPI_IN_SUC_EOF_DES_ADDR_REG The last inlink descriptor address when SPI DMA encountered

EOF. (RO)

Espressif Systems 105 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.35: SPI_INLINK_DSCR_REG (0x128)

0 0

31 0

Reset

SPI_INLINK_DSCR_REG The address of the current inlink descriptor. (RO)

Register 5.36: SPI_INLINK_DSCR_BF0_REG (0x12C)

0 0

31 0

Reset

SPI_INLINK_DSCR_BF0_REG The address of the next inlink descriptor. (RO)

Register 5.37: SPI_INLINK_DSCR_BF1_REG (0x130)

0 0

31 0

Reset

SPI_INLINK_DSCR_BF1_REG The address of the next inlink data buffer. (RO)

Register 5.38: SPI_OUT_EOF_BFR_DES_ADDR_REG (0x134)

0 0

31 0

Reset

SPI_OUT_EOF_BFR_DES_ADDR_REG The buffer address corresponding to the outlink descriptor

that produces EOF. (RO)

Register 5.39: SPI_OUT_EOF_DES_ADDR_REG (0x138)

0 0

31 0

Reset

SPI_OUT_EOF_DES_ADDR_REG The last outlink descriptor address when SPI DMA encountered

EOF. (RO)

Register 5.40: SPI_OUTLINK_DSCR_REG (0x13C)

0 0

31 0

Reset

SPI_OUTLINK_DSCR_REG The address of the current outlink descriptor. (RO)

Espressif Systems 106 ESP32 Technical Reference Manual V1.8

5. SPI

Register 5.41: SPI_OUTLINK_DSCR_BF0_REG (0x140)

0 0

31 0

Reset

SPI_OUTLINK_DSCR_BF0_REG The address of the next outlink descriptor. (RO)

Register 5.42: SPI_OUTLINK_DSCR_BF1_REG (0x144)

0 0

31 0

Reset

SPI_OUTLINK_DSCR_BF1_REG The address of the next outlink data buffer. (RO)

Register 5.43: SPI_DMA_RSTATUS_REG (0x148)

TX
_F

IFO
_E

M
PTY

0

31

TX
_F

IFO
_F

ULL

0

30

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

29 20

TX
_D

ES_A
DDRESS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

TX_FIFO_EMPTY The SPI DMA Tx FIFO is empty. (RO)

TX_FIFO_FULL The SPI DMA Tx FIFO is full. (RO)

TX_DES_ADDRESS The LSB of the SPI DMA outlink descriptor address. (RO)

Register 5.44: SPI_DMA_TSTATUS_REG (0x14C)

RX_
FIF

O_E
M

PTY

0

31

RX_
FIF

O_F
ULL

0

30

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

29 20

RX_
DES_A

DDRESS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

RX_FIFO_EMPTY The SPI DMA Rx FIFO is empty. (RO)

RX_FIFO_FULL The SPI DMA Rx FIFO is full. (RO)

RX_DES_ADDRESS The LSB of the SPI DMA inlink descriptor address. (RO)

Espressif Systems 107 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

6. SD/MMC Host Controller

6.1 Overview

The ESP32 memory card interface controller provides a hardware interface between the APB (Advanced

Peripheral Bus) and an external memory device. The memory card interface allows the ESP32 to be connected

to SDIO memory cards, MMC cards and devices with a CE-ATA interface. It supports two external cards (Card0

and Card1).

6.2 Features

This module has the following features:

• Two external cards

• Supports SD Memory Card standard: versions 3.0 and 3.01

• Supports MMC: versions 4.41, 4.5, and 4.51

• Supports CE-ATA: version 1.1

• Supports 1-bit, 4-bit, and 8-bit (Card0 only) modes

The SD/MMC controller topology is shown in Figure 15. The controller supports two peripherals which cannot be

functional at the same time.

Figure 15: SD/MMC Controller Topology

6.3 SD/MMC External Interface Signals

The primary external interface signals, which enable the SD/MMC controller to communicate with an external

device, are clock (clk), command (cmd) and data signals. Additional signals include the card interrupt, card

detect, and write-protect signals. The direction of each signal is shown in Figure 16. The direction and

description of each pin are listed in Table 26.

Espressif Systems 108 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Figure 16: SD/MMC Controller External Interface Signals

Table 26: SD/MMC Signal Description

Pin Direction Description

cclk_out Output Clock signals for slave device

ccmd Duplex Duplex command/response lines

cdata Duplex Duplex data read/write lines

card_detect_n Input Card detection input line

card_write_prt Input Card write protection status input

6.4 Functional Description

6.4.1 SD/MMC Host Controller Architecture

The SD/MMC host controller consists of two main functional blocks, as shown in Figure 17:

• Bus Interface Unit (BIU): It provides APB interfaces for registers, data read and write operation by FIFO and

DMA.

• Card Interface Unit (CIU): It handles external memory card interface protocols. It also provides clock control.

Figure 17: SDIO Host Block Diagram

Espressif Systems 109 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

6.4.1.1 BIU (Bus Interface Unit)

The BIU provides the access to registers and FIFO data through the Host Interface Unit (HIU). Additionally, it

provides FIFO access to independent data through a DMA interface. The host interface can be configured as an

APB interface. Figure 17 illustrates the internal components of the BIU. The BIU provides the following

functions:

• Host interface

• DMA interface

• Interrupt control

• Register access

• FIFO access

• Power/pull-up control and card detection

6.4.1.2 CIU (Card Interface Unit)

The CIU module implements the card-specific protocols. Within the CIU, the command path control unit and

data path control unit prompt the controller to interface with the command and data ports, respectively, of the

SD/MMC/CE-ATA cards. The CIU also provides clock control. Figure 17 illustrates the internal structure of the

CIU, which consists of the following primary functional blocks:

• Command path

• Data path

• SDIO interrupt control

• Clock control

• Mux/demux unit

6.4.2 Command Path

The command path performs the following functions:

• Configures clock parameters

• Configures card command parameters

• Sends commands to card bus (ccmd_out line)

• Receives responses from card bus (ccmd_in line)

• Sends responses to BIU

• Drives the P-bit on the command line

The command path State Machine is shown in Figure 18.

Espressif Systems 110 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Figure 18: Command Path State Machine

6.4.3 Data Path

The data path block pops FIFO data and transmits them on cdata_out during a write-data transfer, or it receives

data on cdata_in and pushes them into FIFO during a read-data transfer. The data path loads new data

parameters, i.e., expected data, read/write data transfer, stream/block transfer, block size, byte count, card type,

timeout registers, etc., whenever a data transfer command is not in progress.

If the data_expected bit is set in the Command register, the new command is a data-transfer command and the

data path starts one of the following operations:

• Transmitting data if the read/write bit = 1

• Receiving data if read/write bit = 0

6.4.3.1 Data Transmit Operation

The data transmit state machine is illustrated in Figure 19. The module starts data transmission two clock cycles

after a response for the data-write command is received. This occurs even if the command path detects a

response error or a cyclic redundancy check (CRC) error in a response. If no response is received from the card

until the response timeout, no data are transmitted. Depending on the value of the transfer_mode bit in the

Command register, the data-transmit state machine adds data to the card’s data bus in a stream or in block(s).

The data transmit state machine is shown in Figure 19.

Figure 19: Data Transmit State Machine

Espressif Systems 111 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

6.4.3.2 Data Receive Operation

The data-receive state machine is illustrated in Figure 20. The module receives data two clock cycles after the

end bit of a data-read command, even if the command path detects a response error or a CRC error. If no

response is received from the card and a response timeout occurs, the BIU does not receive a signal about the

completion of the data transfer. If the command sent by the CIU is an illegal operation for the card, it would

prevent the card from starting a read-data transfer, and the BIU will not receive a signal about the completion of

the data transfer.

If no data are received by the data timeout, the data path signals a data timeout to the BIU, which marks an end

to the data transfer. Based on the value of the transfer_mode bit in the Command register, the data-receive state

machine gets data from the card’s data bus in a stream or block(s). The data receive state machine is shown in

Figure 20.

Figure 20: Data Receive State Machine

6.5 Software Restrictions for Proper CIU Operation

• Only one card at a time can be selected to execute a command or data transfer. For example, when data

are being transferred to or from a card, a new command must not be issued to another card. A new

command, however, can be issued to the same card, allowing it to read the device status or stop the

transfer.

• Only one command at a time can be issued for data transfers.

• During an open-ended card-write operation, if the card clock is stopped due to FIFO being empty, the

software must fill FIFO with data first, and then start the card clock. Only then can it issue a stop/abort

command to the card.

• During an SDIO/COMBO card transfer, if the card function is suspended and the software wants to resume

the suspended transfer, it must first reset FIFO, and then issue the resume command as if it were a new

data-transfer command.

• When issuing card reset commands (CMD0, CMD15 or CMD52_reset), while a card data transfer is in

progress, the software must set the stop_abort_cmd bit in the Command register, so that the CIU can stop

the data transfer after issuing the card reset command.

• When the data’s end bit error is set in the RINTSTS register, the CIU does not guarantee SDIO interrupts. In

such a case, the software ignores SDIO interrupts and issues a stop/abort command to the card, so that

the card stops sending read-data.

Espressif Systems 112 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

• If the card clock is stopped due to FIFO being full during a card read, the software will read at least two

FIFO locations to restart the card clock.

• Only one CE-ATA device at a time can be selected for a command or data transfer. For example, when

data are transferred from a CE-ATA device, a new command should not be sent to another CE-ATA device.

• If a CE-ATA device’s interrupts are enabled (nIEN=0), a new RW_BLK command should not be sent to the

same device if the execution of a RW_BLK command is already in progress (the RW_BLK command used

in this databook is the RW_MULTIPLE_BLOCK MMC command defined by the CE-ATA specifications).

Only the CCSD can be sent while waiting for the CCS.

• If, however, a CE-ATA device’s interrupts are disabled (nIEN=1), a new command can be issued to the

same device, allowing it to read status information.

• Open-ended transfers are not supported in CE-ATA devices.

• The send_auto_stop signal is not supported (software should not set the send_auto_stop bit) in CE-ATA

transfers.

After configuring the command start bit to 1, the values of the following registers cannot be changed before a

command has been issued:

• CMD - command

• CMDARG - command argument

• BYTCNT - byte count

• BLKSIZ - block size

• CLKDIV - clock divider

• CKLENA - clock enable

• CLKSRC - clock source

• TMOUT - timeout

• CTYPE - card type

6.6 RAM for Receiving and Sending Data

The submodule RAM is a buffer area for sending and receiving data. It can be divided into two units: the one is for

sending data, and the other is for receiving data. The process of sending and receiving data can also be achieved

by the CPU and DMA for reading and writing. The latter method is described in detail in Section 6.8.

6.6.1 Transmit RAM Module

There are two ways to enable a write operation: DMA and CPU read/write.

If SDIO-sending is enabled, data can be written to the transferred RAM module by APB interface or DMA. Data

will be written from register EMAC_FIFO to the CPU, directly, by an APB interface.

Espressif Systems 113 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

6.6.2 Receive RAM Module

There are two ways to enable a read operation: DMA and CPU read/write.

When a subunit of the data path receives data, the subdata will be written onto the receive-RAM. Then, these

subdata can be read either with the APB or the DMA method at the reading end. Register EMAC_FIFO can be

read by the APB directly.

6.7 Descriptor Chain

Each linked list module consists of two parts: the linked list itself and a data buffer. In other words, each module

points to a unique data buffer and the linked list that follows the module. Figure 21 shows the descriptor

chain.

Figure 21: Descriptor Chain

6.8 The Structure of a Linked List

Each linked list consists of four words. As is shown below, Figure 22 demonstrates the linked list’s structure, and

Table 27, Table 28, Table 29, Table 30 provide the descriptions of linked lists.

Figure 22: The Structure of a Linked List

Espressif Systems 114 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

The DES0 element contains control and status information.

Table 27: DES0

Bits Name Description

31 OWN

When set, this bit indicates that the descriptor is

owned by the DMAC. When reset, it indicates that the

descriptor is owned by the Host. The DMAC clears

this bit when it completes the data transfer.

30 CES (Card Error Summary)

These error bits indicate the status of the transition to

or from the card.

The following bits are also present in RINTSTS, which

indicates their digital logic OR gate.

• EBE: End Bit Error

• RTO: Response Time out

• RCRC: Response CRC

• SBE: Start Bit Error

• DRTO: Data Read Timeout

• DCRC: Data CRC for Receive

• RE: Response Error

29:6 Reserved Reserved

5 ER (End of Ring)

When set, this bit indicates that the descriptor list has

reached its final descriptor. The DMAC then returns

to the base address of the list, creating a Descriptor

Ring.

4
CH

(Second Address Chained)

When set, this bit indicates that the second address in

the descriptor is the Next Descriptor address. When

this bit is set, BS2 (DES1[25:13]) should be all zeros.

3 FD (First Descriptor)

When set, this bit indicates that this descriptor con-

tains the first buffer of the data. If the size of the first

buffer is 0, the Next Descriptor contains the beginning

of the data.

2 LD (Last Descriptor)

This bit is associated with the last block of a DMA

transfer. When set, the bit indicates that the buffers

pointed by this descriptor are the last buffers of the

data. After this descriptor is completed, the remain-

ing byte count is 0. In other words, after the descriptor

with the LD bit set is completed, the remaining byte

count should be 0.

1
DIC (Disable Interrupt

on Completion)

When set, this bit will prevent the setting of the TI/RI

bit of the DMAC Status Register (IDSTS) for the data

that ends in the buffer pointed by this descriptor.

0 Reserved Reserved

The DES1 element contains the buffer size.

Espressif Systems 115 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Table 28: DES1

Bits Name Description

31:26 Reserved Reserved

25:13 Reserved Reserved

12:0 BS1 (Buffer 1 Size)

Indicates the data buffer byte size, which must be a

multiple of four. In the case where the buffer size is not

a multiple of four, the resulting behavior is undefined.

This field should not be zero.

The DES2 element contains the address pointer to the data buffer.

Table 29: DES2

Bits Name Description

31:0 Buffer Address Pointer 1
These bits indicate the physical address of the data

buffer.

The DES3 element contains the address pointer to the next descriptor if the present descriptor is not the last one

in a chained descriptor structure.

Table 30: DES3

Bits Name Description

31:0 Next Descriptor Address

If the Second Address Chained (DES0[4]) bit is set,

then this address contains the pointer to the physical

memory where the Next Descriptor is present.

If this is not the last descriptor, then the Next Descrip-

tor address pointer must be DES3[1:0] = 0.

6.9 Initialization

6.9.1 DMAC Initialization

The DMAC initialization should proceed as follows:

• Write to the DMAC Bus Mode Register (BMOD_REG) will set the Host bus’s access parameters.

• Write to the DMAC Interrupt Enable Register (IDINTEN) will mask any unnecessary interrupt causes.

• The software driver creates either the transmit or the receive descriptor list. Then, it writes to the DMAC

Descriptor List Base Address Register (DBADDR), providing the DMAC with the starting address of the list.

• The DMAC engine attempts to acquire descriptors from descriptor lists.

Espressif Systems 116 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

6.9.2 DMAC Transmission Initialization

The DMAC transmission occurs as follows:

1. The Host sets up the elements (DES0-DES3) for transmission, and sets the OWN bit (DES0[31]). The Host

also prepares the data buffer.

2. The Host programs the write-data command in the CMD register in BIU.

3. The Host also programs the required transmit threshold (TX_WMARK field in FIFOTH register).

4. The DMAC engine fetches the descriptor and checks the OWN bit. If the OWN bit is not set, it means that

the host owns the descriptor. In this case, the DMAC enters a suspend-state and asserts the Descriptor

Unable interrupt in the IDSTS register. In such a case, the host needs to release the DMAC by writing any

value to PLDMND_REG.

5. It then waits for the Command Done (CD) bit and no errors from BIU, which indicates that a transfer can be

done.

6. Subsequently, the DMAC engine waits for a DMA interface request (dw_dma_req) from BIU. This request

will be generated, based on the programmed transmit-threshold value. For the last bytes of data which

cannot be accessed using a burst, single transfers are performed on the AHB Master Interface.

7. The DMAC fetches the transmit data from the data buffer in the Host memory and transfers them to FIFO

for transmission to card.

8. When data span across multiple descriptors, the DMAC fetches the next descriptor and extends its

operation using the following descriptor. The last descriptor bit indicates whether the data span multiple

descriptors or not.

9. When data transmission is complete, the status information is updated in the IDSTS register by setting the

Transmit Interrupt, if it has already been enabled. Also, the OWN bit is cleared by the DMAC by performing

a write transaction to DES0.

6.9.3 DMAC Reception Initialization

The DMAC reception occurs as follows:

1. The Host sets up the element (DES0-DES3) for reception, and sets the OWN bit (DES0[31]).

2. The Host programs the read-data command in the CMD register in BIU.

3. Then, the Host programs the required level of the receive-threshold (RX_WMARK field in FIFOTH register).

4. The DMAC engine fetches the descriptor and checks the OWN bit. If the OWN bit is not set, it means that

the host owns the descriptor. In this case, the DMA enters a suspend-state and asserts the Descriptor

Unable interrupt in the IDSTS register. In such a case, the host needs to release the DMAC by writing any

value to PLDMND_REG.

5. It then waits for the Command Done (CD) bit and no errors from BIU, which indicates that a transfer can be

done.

6. The DMAC engine then waits for a DMA interface request (dw_dma_req) from BIU. This request will be

generated, based on the programmed receive-threshold value. For the last bytes of the data which cannot

be accessed using a burst, single transfers are performed on the AHB.

7. The DMAC fetches the data from FIFO and transfers them to the Host memory.

Espressif Systems 117 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

8. When data span across multiple descriptors, the DMAC will fetch the next descriptor and extend its

operation using the following descriptor. The last descriptor bit indicates whether the data span multiple

descriptors or not.

9. When data reception is complete, the status information is updated in the IDSTS register by setting

Receive-Interrupt, if it has already been enabled. Also, the OWN bit is cleared by the DMAC by performing

a write-transaction to DES0.

6.10 Interrupt

Interrupts can be generated as a result of various events. The IDSTS register contains all the bits that might

cause an interrupt. The IDINTEN register contains an enable bit for each of the events that can cause an

interrupt.

There are two groups of summary interrupts, ”Normal” ones (bit8 NIS) and ”Abnormal” ones (bit9 AIS), as

outlined in the IDSTS register. Interrupts are cleared by writing 1 to the position of the corresponding bit. When all

the enabled interrupts within a group are cleared, the corresponding summary bit is also cleared. When both

summary bits are cleared, the interrupt signal dmac_intr_o is de-asserted (stops signalling).

Interrupts are not queued up, and if a new interrupt-event occurs before the driver has responded to it, no

additional interrupts are generated. For example, the Receive Interrupt IDSTS[1] indicates that one or more data

were transferred to the Host buffer.

An interrupt is generated only once for concurrent events. The driver must scan the IDSTS register for the

interrupt cause.

6.11 Register Summary

Name Description Address Access

CTRL_REG Control register 0x0000 R/W

CLKDIV_REG Clock divider configuration register 0x0008 R/W

CLKSRC_REG Clock source selection register 0x000C R/W

CLKENA_REG Clock enable register 0x0010 R/W

TMOUT_REG Data and response timeout configuration register 0x0014 R/W

CTYPE_REG Card bus width configuration register 0x0018 R/W

BLKSIZ_REG Card data block size configuration register 0x001C R/W

BYTCNT_REG Data transfer length configuration register 0x0020 R/W

INTMASK_REG SDIO interrupt mask register 0x0024 R/W

CMDARG_REG Command argument data register 0x0028 R/W

CMD_REG Command and boot configuration register 0x002C R/W

RESP0_REG Response data register 0x0030 RO

RESP1_REG Long response data register 0x0034 RO

RESP2_REG Long response data register 0x0038 RO

RESP3_REG Long response data register 0x003C RO

MINTSTS_REG Masked interrupt status register 0x0040 RO

RINTSTS_REG Raw interrupt status register 0x0044 R/W

STATUS_REG SD/MMC status register 0x0048 RO

Espressif Systems 118 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Name Description Address Access

FIFOTH_REG FIFO configuration register 0x004C R/W

CDETECT_REG Card detect register 0x0050 RO

WRTPRT_REG Card write protection (WP) status register 0x0054 RO

TCBCNT_REG Transferred byte count register 0x005C RO

TBBCNT_REG Transferred byte count register 0x0060 RO

DEBNCE_REG Debounce filter time configuration register 0x0064 R/W

USRID_REG User ID (scratchpad) register 0x0068 R/W

RST_N_REG Card reset register 0x0078 R/W

BMOD_REG Burst mode transfer configuration register 0x0080 R/W

PLDMND_REG Poll demand configuration register 0x0084 WO

DBADDR_REG Descriptor base address register 0x0088 R/W

IDSTS_REG IDMAC status register 0x008C R/W

IDINTEN_REG IDMAC interrupt enable register 0x0090 R/W

DSCADDR_REG Host descriptor address pointer 0x0094 RO

BUFADDR_REG Host buffer address pointer register 0x0098 RO

Espressif Systems 119 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

6.12 Registers

SD/MMC controller registers can be accessed by the APB bus of the CPU.

Register 6.1: CTRL_REG (0x0000)

(re
se

rve
d)

0x00

31 25

(re
se

rve
d)

1

24

(re
se

rve
d)

0x00

131 120

CEAT
A_D

EVIC
E_IN

TE
RRUPT_

STA
TU

S

0

11

SEND_A
UTO

_S
TO

P_C
CSD

0

10

SEND_C
CSD

0

9

ABORT_
READ_D

AT
A

0

8

SEND_IR
Q_R

ESPONSE

0

7

READ_W
AIT

0

6

(re
se

rve
d)

0

5

IN
T_

ENABLE

0

4

(re
se

rve
d)

0

3

DM
A_R

ESET

0

2

FIF
O_R

ESET

0

1

CONTR
OLL

ER_R
ESET

0

0

Reset

CEATA_DEVICE_INTERRUPT_STATUS Software should appropriately write to this bit after the

power-on reset or any other reset to the CE-ATA device. After reset, the CE-ATA device’s interrupt

is usually disabled (nIEN = 1). If the host enables the CE-ATA device’s interrupt, then software

should set this bit. (R/W)

SEND_AUTO_STOP_CCSD Always set send_auto_stop_ccsd and send_ccsd bits together;

send_auto_stop_ccsd should not be set independently of send_ccsd. When set, SD/MMC au-

tomatically sends an internally-generated STOP command (CMD12) to the CE-ATA device. After

sending this internally-generated STOP command, the Auto Command Done (ACD) bit in RINTSTS

is set and an interrupt is generated for the host, in case the ACD interrupt is not masked. Af-

ter sending the Command Completion Signal Disable (CCSD), SD/MMC automatically clears the

send_auto_stop_ccsd bit. (R/W)

SEND_CCSD When set, SD/MMC sends CCSD to the CE-ATA device. Software sets this bit only

if the current command is expecting CCS (that is, RW_BLK), and if interrupts are enabled for the

CE-ATA device. Once the CCSD pattern is sent to the device, SD/MMC automatically clears the

send_ccsd bit. It also sets the Command Done (CD) bit in the RINTSTS register, and generates

an interrupt for the host, in case the Command Done interrupt is not masked. NOTE: Once the

send_ccsd bit is set, it takes two card clock cycles to drive the CCSD on the CMD line. Due to this,

within the boundary conditions the CCSD may be sent to the CE-ATA device, even if the device

has signalled CCS. (R/W)

ABORT_READ_DATA After a suspend-command is issued during a read-operation, software polls the

card to find when the suspend-event occurred. Once the suspend-event has occurred, software

sets the bit which will reset the data state machine that is waiting for the next block of data. This

bit is automatically cleared once the data state machine is reset to idle. (R/W)

SEND_IRQ_RESPONSE Bit automatically clears once response is sent. To wait for MMC card inter-

rupts, host issues CMD40 and waits for interrupt response from MMC card(s). In the meantime, if

host wants SD/MMC to exit waiting for interrupt state, it can set this bit, at which time SD/MMC

command state-machine sends CMD40 response on bus and returns to idle state. (R/W)

Espressif Systems 120 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.2: CTRL_REG (continued) (0x0000)

(re
se

rve
d)

0x00

31 25

(re
se

rve
d)

1

24

(re
se

rve
d)

0x00

131 120

CEAT
A_D

EVIC
E_IN

TE
RRUPT_

STA
TU

S

0

11

SEND_A
UTO

_S
TO

P_C
CSD

0

10

SEND_C
CSD

0

9

ABORT_
READ_D

AT
A

0

8

SEND_IR
Q_R

ESPONSE

0

7

READ_W
AIT

0

6

DM
A_E

NABLE

0

5

IN
T_

ENABLE

0

4

(re
se

rve
d)

0

3

DM
A_R

ESET

0

2

FIF
O_R

ESET

0

1

CONTR
OLL

ER_R
ESET

0

0

Reset

READ_WAIT For sending read-wait to SDIO cards. (R/W)

INT_ENABLE Global interrupt enable/disable bit. 0: Disable; 1: Enable. (R/W)

DMA_RESET To reset DMA interface, firmware should set bit to 1. This bit is auto-cleared after two

AHB clocks. (R/W)

FIFO_RESET To reset FIFO, firmware should set bit to 1. This bit is auto-cleared after completion of

reset operation. Note: FIFO pointers will be out of reset after 2 cycles of system clocks in addition

to synchronization delay (2 cycles of card clock), after the fifo_reset is cleared. (R/W)

CONTROLLER_RESET To reset controller, firmware should set this bit. This bit is auto-cleared after

two AHB and two cclk_in clock cycles. (R/W)

Espressif Systems 121 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.3: CLKDIV_REG (0x0008)

CLK
_D

IVID
ER3

0x000

31 24

CLK
_D

IVID
ER2

0x000

23 16

CLK
_D

IVID
ER1

0x000

15 8

CLK
_D

IVID
ER0

0x000

7 0

Reset

CLK_DIVIDER3 Clock divider-3 value. Clock division factor is 2*n, where n=0 bypasses the divider

(division factor of 1). For example, a value of 1 means divide by 2*1 = 2, a value of 0xFF means

divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented

because only one clock divider is supported. (R/W)

CLK_DIVIDER2 Clock divider-2 value. Clock division factor is 2*n, where n=0 bypasses the divider

(division factor of 1). For example, a value of 1 means divide by 2*1 = 2, a value of 0xFF means

divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented

because only one clock divider is supported. (R/W)

CLK_DIVIDER1 Clock divider-1 value. Clock division factor is 2*n, where n=0 bypasses the divider

(division factor of 1). For example, a value of 1 means divide by 2*1 = 2, a value of 0xFF means

divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented

because only one clock divider is supported. (R/W)

CLK_DIVIDER0 Clock divider-0 value. Clock division factor is 2*n, where n=0 bypasses the divider

(division factor of 1). For example, a value of 1 means divide by 2*1 = 2, a value of 0xFF means

divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented

because only one clock divider is supported. (R/W)

Register 6.4: CLKSRC_REG (0x000C)

(re
se

rve
d)

0x000000

31 4

CLK
SRC_R

EG

0x0

3 0

Reset

CLKSRC_REG Clock divider source for two SD cards is supported. Each card has two bits assigned

to it. For example, bit[1:0] are assigned for card 0, bit[3:2] are assigned for card 1. Card 0 maps

and internally routes clock divider[0:3] outputs to cclk_out[1:0] pins, depending on bit value.

00 : Clock divider 0;

01 : Clock divider 1;

10 : Clock divider 2;

11 : Clock divider 3.

In MMC-Ver3.3-only controller, only one clock divider is supported. The cclk_out is always from

clock divider 0, and this register is not implemented. (R/W)

Espressif Systems 122 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.5: CLKENA_REG (0x0010)

(re
se

rve
d)

0x00000

31 2

CCLK
_E

NABEL

0x00000

1 0

Reset

CCLK_ENABEL Clock-enable control for two SD card clocks and one MMC card clock is supported.

0: Clock disabled;

1: Clock enabled.

In MMC-Ver3.3-only mode, since there is only one cclk_out, only cclk_enable[0] is used. (R/W)

Register 6.6: TMOUT_REG (0x0014)

DAT
A_T

IM
EOUT

0x0FFFFFF

31 8

RESPONSE_T
IM

EOUT

0x040

7 0

Reset

DATA_TIMEOUT Value for card data read timeout. This value is also used for data starvation by host

timeout. The timeout counter is started only after the card clock is stopped. This value is specified

in number of card output clocks, i.e. cclk_out of the selected card.

NOTE: The software timer should be used if the timeout value is in the order of 100 ms. In this

case, read data timeout interrupt needs to be disabled. (R/W)

RESPONSE_TIMEOUT Response timeout value. Value is specified in terms of number of card output

clocks, i.e., cclk_out. (R/W)

Espressif Systems 123 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.7: CTYPE_REG (0x0018)

(re
se

rve
d)

0x00000

31 18

CARD_W
ID

TH
8

0x00000

17 16

(re
se

rve
d)

0x00000

15 2

CARD_W
ID

TH
4

0x00000

1 0

Reset

CARD_WIDTH8 One bit per card indicates if card is in 8-bit mode.

0: Non 8-bit mode;

1: 8-bit mode.

Bit[17:16] correspond to card[1:0] respectively. (R/W)

CARD_WIDTH4 One bit per card indicates if card is 1-bit or 4-bit mode.

0: 1-bit mode;

1: 4-bit mode.

Bit[1:0] correspond to card[1:0] respectively. Only NUM_CARDS*2 number of bits are imple-

mented. (R/W)

Register 6.8: BLKSIZ_REG (0x001C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

BLO
CK_S

IZE

0x00200

15 0

Reset

BLOCK_SIZE Block size. (R/W)

Register 6.9: BYTCNT_REG (0x0020)

0x000000200

31 0

Reset

BYTCNT_REG Number of bytes to be transferred, should be an integral multiple of Block Size for

block transfers. For data transfers of undefined byte lengths, byte count should be set to 0. When

byte count is set to 0, it is the responsibility of host to explicitly send stop/abort command to

terminate data transfer. (R/W)

Espressif Systems 124 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.10: INTMASK_REG (0x0024)

(re
se

rve
d)

0x00000

31 18

SDIO
_IN

T_
M

ASK

0x00000

17 16

IN
T_

M
ASK

0x00000

15 0

Reset

SDIO_INT_MASK SDIO interrupt mask, one bit for each card. Bit[17:16] correspond to card[15:0] re-

spectively. When masked, SDIO interrupt detection for that card is disabled. 0 masks an interrupt,

and 1 enables an interrupt. In MMC-Ver3.3-only mode, these bits are always 0. (R/W)

INT_MASK These bits used to mask unwanted interrupts. A value of 0 masks interrupt, and a value

of 1 enables the interrupt. (R/W)

Bit 15 (EBE): End-bit error, read/write (no CRC)

Bit 14 (ACD): Auto command done

Bit 13 (SBE/BCI): Start Bit Error/Busy Clear Interrupt

Bit 12 (HLE): Hardware locked write error

Bit 11 (FRUN): FIFO underrun/overrun error

Bit 10 (HTO): Data starvation-by-host timeout/Volt_switch_int

Bit 9 (DRTO): Data read timeout

Bit 8 (RTO): Response timeout

Bit 7 (DCRC): Data CRC error

Bit 6 (RCRC): Response CRC error

Bit 5 (RXDR): Receive FIFO data request

Bit 4 (TXDR): Transmit FIFO data request

Bit 3 (DTO): Data transfer over

Bit 2 (CD): Command done

Bit 1 (RE): Response error

Bit 0 (CD): Card detect

Register 6.11: CMDARG_REG (0x0028)

0x000000000

31 0

Reset

CMDARG_REG Value indicates command argument to be passed to the card. (R/W)

Espressif Systems 125 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.12: CMD_REG (0x002C)

STA
RT_

CM
D

0

31

(re
se

rve
d)

0

30

USE_H
OLE

1

29

(re
se

rve
d)

0

28

(re
se

rve
d)

0

27

(re
se

rve
d)

0

26

(re
se

rve
d)

0

25

(re
se

rve
d)

0

24

CCS_E
XP

ECTE
D

0

23

READ_C
EAT

A_D
EVIC

E

0

22

UPDAT
E_C

LO
CK_R

EGIS
TE

RS_O
NLY

0

21

CARD_N
UM

BER

0x00

20 16

SEND_IN
ITI

ALIZ
AT

IO
N

0

15

STO
P_A

BORT_
CM

D

0

14

W
AIT_

PRVDAT
A_C

OM
PLE

TE

0

13

SEND_A
UTO

_S
TO

P

0

12

TR
ANSFE

R_M
ODE

0

11

READ/W
RITE

0

10

DAT
A_E

XP
ECTE

D

0

9

CHECK_R
ESPONSE_C

RC

0

8

RESPONSE_L
ENGTH

0

7

RESPONSE_E
XP

ECT

0

6

CM
D_IN

DEX

0x00

5 0

Reset

START_CMD Start command. Once command is served by the CIU, this bit is automatically cleared.

When this bit is set, host should not attempt to write to any command registers. If a write is

attempted, hardware lock error is set in raw interrupt register. Once command is sent and a

response is received from SD_MMC_CEATA cards, Command Done bit is set in the raw interrupt

Register. (R/W)

USE_HOLE Use Hold Register. (R/W) 0: CMD and DATA sent to card bypassing HOLD Register; 1:

CMD and DATA sent to card through the HOLD Register.

CCS_EXPECTED Expected Command Completion Signal (CCS) configuration. (R/W)

0: Interrupts are not enabled in CE-ATA device (nIEN = 1 in ATA control register), or command

does not expect CCS from device.

1: Interrupts are enabled in CE-ATA device (nIEN = 0), and RW_BLK command expects command

completion signal from CE-ATA device.

If the command expects Command Completion Signal (CCS) from the CE-ATA device, the software

should set this control bit. SD/MMC sets Data Transfer Over (DTO) bit in RINTSTS register and

generates interrupt to host if Data Transfer Over interrupt is not masked.

READ_CEATA_DEVICE Read access flag. (R/W)

0: Host is not performing read access (RW_REG or RW_BLK)towards CE-ATA device

1: Host is performing read access (RW_REG or RW_BLK) towards CE-ATA device.

Software should set this bit to indicate that CE-ATA device is being accessed for read transfer.

This bit is used to disable read data timeout indication while performing CE-ATA read transfers.

Maximum value of I/O transmission delay can be no less than 10 seconds. SD/MMC should not

indicate read data timeout while waiting for data from CE-ATA device. (R/W)

Espressif Systems 126 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.13: CMD_REG (continued) (0x002C)

STA
RT_

CM
D

0

31

(re
se

rve
d)

0

30

USE_H
OLE

1

29

(re
se

rve
d)

0

28

(re
se

rve
d)

0

27

(re
se

rve
d)

0

26

(re
se

rve
d)

0

25

(re
se

rve
d)

0

24

CCS_E
XP

ECTE
D

0

23

READ_C
EAT

A_D
EVIC

E

0

22

UPDAT
E_C

LO
CK_R

EGIS
TE

RS_O
NLY

0

21

CARD_N
UM

BER

0x00

20 16

SEND_IN
ITI

ALIZ
AT

IO
N

0

15

STO
P_A

BORT_
CM

D

0

14

W
AIT_

PRVDAT
A_C

OM
PLE

TE

0

13

SEND_A
UTO

_S
TO

P

0

12

TR
ANSFE

R_M
ODE

0

11

READ/W
RITE

0

10

DAT
A_E

XP
ECTE

D

0

9

CHECK_R
ESPONSE_C

RC

0

8

RESPONSE_L
ENGTH

0

7

RESPONSE_E
XP

ECT

0

6

CM
D_IN

DEX

0x00

5 0

Reset

UPDATE_CLOCK_REGISTERS_ONLY (R/W)

0: Normal command sequence.

1: Do not send commands, just update clock register value into card clock domain

Following register values are transferred into card clock domain: CLKDIV, CLRSRC, and CLKENA.

Changes card clocks (change frequency, truncate off or on, and set low-frequency mode). This

is provided in order to change clock frequency or stop clock without having to send command to

cards.

During normal command sequence, when update_clock_registers_only = 0, following control reg-

isters are transferred from BIU to CIU: CMD, CMDARG, TMOUT, CTYPE, BLKSIZ, and BYTCNT.

CIU uses new register values for new command sequence to card(s). When bit is set, there are no

Command Done interrupts because no command is sent to SD_MMC_CEATA cards.

CARD_NUMBER Card number in use. Represents physical slot number of card being accessed. In

MMC-Ver3.3-only mode, up to two cards are supported. In SD-only mode, up to two cards are

supported. (R/W)

SEND_INITIALIZATION (R/W)

0: Do not send initialization sequence (80 clocks of 1) before sending this command.

1: Send initialization sequence before sending this command.

After power on, 80 clocks must be sent to card for initialization before sending any commands to

card. Bit should be set while sending first command to card so that controller will initialize clocks

before sending command to card.

STOP_ABORT_CMD (R/W)

0: Neither stop nor abort command can stop current data transfer. If abort is sent to function-

number currently selected or not in data-transfer mode, then bit should be set to 0.

1: Stop or abort command intended to stop current data transfer in progress. When open-ended

or predefined data transfer is in progress, and host issues stop or abort command to stop data

transfer, bit should be set so that command/data state-machines of CIU can return correctly to idle

state.

Espressif Systems 127 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.14: CMD_REG (continued) (0x002C)

STA
RT_

CM
D

0

31

(re
se

rve
d)

0

30

USE_H
OLE

1

29

(re
se

rve
d)

0

28

(re
se

rve
d)

0

27

(re
se

rve
d)

0

26

(re
se

rve
d)

0

25

(re
se

rve
d)

0

24

CCS_E
XP

ECTE
D

0

23

READ_C
EAT

A_D
EVIC

E

0

22

UPDAT
E_C

LO
CK_R

EGIS
TE

RS_O
NLY

0

21

CARD_N
UM

BER

0x00

20 16

SEND_IN
ITI

ALIZ
AT

IO
N

0

15

STO
P_A

BORT_
CM

D

0

14

W
AIT_

PRVDAT
A_C

OM
PLE

TE

0

13

SEND_A
UTO

_S
TO

P

0

12

TR
ANSFE

R_M
ODE

0

11

READ/W
RITE

0

10

DAT
A_E

XP
ECTE

D

0

9

CHECK_R
ESPONSE_C

RC

0

8

RESPONSE_L
ENGTH

0

7

RESPONSE_E
XP

ECT

0

6

CM
D_IN

DEX

0x00

5 0

Reset

WAIT_PRVDATA_COMPLETE (R/W)

0: Send command at once, even if previous data transfer has not completed;

1: Wait for previous data transfer to complete before sending Command.

The wait_prvdata_complete = 0 option is typically used to query status of card during data transfer

or to stop current data transfer. card_number should be same as in previous command.

SEND_AUTO_STOP (R/W)

0: No stop command is sent at the end of data transfer;

1: Send stop command at the end of data transfer.

TRANSFER_MODE (R/W)

0: Block data transfer command;

1: Stream data transfer command. Don’t care if no data expected.

READ/WRITE (R/W)

0: Read from card;

1: Write to card.

Don’t care if no data is expected from card.

DATA_EXPECTED (R/W)

0: No data transfer expected.

1: Data transfer expected.

CHECK_RESPONSE_CRC (R/W)

0: Do not check;

1: Check response CRC.

Some of command responses do not return valid CRC bits. Software should disable CRC checks

for those commands in order to disable CRC checking by controller.

RESPONSE_LENGTH (R/W)

0: Short response expected from card;

1: Long response expected from card.

RESPONSE_EXPECT (R/W)

0: No response expected from card;

1: Response expected from card.

CMD_INDEX Command index. (R/W)

Espressif Systems 128 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.15: RESP0_REG (0x0030)

0x000000000

31 0

Reset

RESP0_REG Bit[31:0] of response. (RO)

Register 6.16: RESP1_REG (0x0034)

0x000000000

31 0

Reset

RESP1_REG Bit[63:32] of long response. (RO)

Register 6.17: RESP2_REG (0x0038)

0x000000000

31 0

Reset

RESP2_REG Bit[95:64] of long response. (RO)

Register 6.18: RESP3_REG (0x003C)

0x000000000

31 0

Reset

RESP3_REG Bit[127:96] of long response. (RO)

Espressif Systems 129 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.19: MINTSTS_REG (0x0040)

(re
se

rve
d)

0

31 18

SDIO
_IN

TE
RRUPT_

M
SK

0x0

17 16

IN
T_

STA
TU

S_M
SK

0x00000

15 0

Reset

SDIO_INTERRUPT_MSK Interrupt from SDIO card, one bit for each card. Bit[17:16] correspond

to card1 and card0, respectively. SDIO interrupt for card is enabled only if corresponding

sdio_int_mask bit is set in Interrupt mask register (Setting mask bit enables interrupt). (RO)

INT_STATUS_MSK Interrupt enabled only if corresponding bit in interrupt mask register is set. (RO)

Bit 15 (EBE): End-bit error, read/write (no CRC)

Bit 14 (ACD): Auto command done

Bit 13 (SBE/BCI): Start Bit Error/Busy Clear Interrupt

Bit 12 (HLE): Hardware locked write error

Bit 11 (FRUN): FIFO underrun/overrun error

Bit 10 (HTO): Data starvation by host timeout (HTO)

Bit 9 (DTRO): Data read timeout

Bit 8 (RTO): Response timeout

Bit 7 (DCRC): Data CRC error

Bit 6 (RCRC): Response CRC error

Bit 5 (RXDR): Receive FIFO data request

Bit 4 (TXDR): Transmit FIFO data request

Bit 3 (DTO): Data transfer over

Bit 2 (CD): Command done

Bit 1 (RE): Response error

Bit 0 (CD): Card detect

Espressif Systems 130 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.20: RINTSTS_REG (0x0044)

(re
se

rve
d)

0x00000

31 16

SDIO
_IN

TE
RRUPT_

RAW

0x0

17 16

IN
T_

STA
TU

S_R
AW

0x00000

31 18

Reset

SDIO_INTERRUPT_RAW Interrupt from SDIO card, one bit for each card. Bit[17:16] correspond to

card1 and card0, respectively. Setting a bit clears the corresponding interrupt bit and writing 0 has

no effect. (R/W)

0: No SDIO interrupt from card;

1: SDIO interrupt from card.

In MMC-Ver3.3-only mode, these bits are always 0. Bits are logged regardless of interrupt-mask

status. (R/W)

INT_STATUS_RAW Setting a bit clears the corresponding interrupt and writing 0 has no effect. Bits

are logged regardless of interrupt mask status. (R/W)

Bit 15 (EBE): End-bit error, read/write (no CRC)

Bit 14 (ACD): Auto command done

Bit 13 (SBE/BCI): Start Bit Error/Busy Clear Interrupt

Bit 12 (HLE): Hardware locked write error

Bit 11 (FRUN): FIFO underrun/overrun error

Bit 10 (HTO): Data starvation by host timeout (HTO)

Bit 9 (DTRO): Data read timeout

Bit 8 (RTO): Response timeout

Bit 7 (DCRC): Data CRC error

Bit 6 (RCRC): Response CRC error

Bit 5 (RXDR): Receive FIFO data request

Bit 4 (TXDR): Transmit FIFO data request

Bit 3 (DTO): Data transfer over

Bit 2 (CD): Command done

Bit 1 (RE): Response error

Bit 0 (CD): Card detect

Espressif Systems 131 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.21: STATUS_REG (0x0048)

(re
se

rve
d)

0

31

(re
se

rve
d)

0

30

FIF
O_C

OUNT

0x000

29 17

RESPONSE_IN
DEX

0x00

16 11

DAT
A_S

TA
TE

_M
C_B

USY

1

10

DAT
A_B

USY

1

9

DAT
A_3

_S
TA

TU
S

1

8

COM
M

AND_F
SM

_S
TA

TE
S

0x01

7 4

FIF
O_F

ULL

0

3

FIF
O_E

M
PTY

1

2

FIF
O_T

X_
W

AT
ERM

ARK

1

1

FIF
O_R

X_
W

AT
ERM

ARK

0

0

Reset

FIFO_COUNT FIFO count, number of filled locations in FIFO. (RO)

RESPONSE_INDEX Index of previous response, including any auto-stop sent by core. (RO)

DATA_STATE_MC_BUSY Data transmit or receive state-machine is busy. (RO)

DATA_BUSY Inverted version of raw selected card_data[0]. (RO)

0: Card data not busy;

1: Card data busy.

DATA_3_STATUS Raw selected card_data[3], checks whether card is present. (RO)

0: card not present;

1: card present.

COMMAND_FSM_STATES Command FSM states. (RO)

0: Idle

1: Send init sequence

2: Send cmd start bit

3: Send cmd tx bit

4: Send cmd index + arg

5: Send cmd crc7

6: Send cmd end bit

7: Receive resp start bit

8: Receive resp IRQ response

9: Receive resp tx bit

10: Receive resp cmd idx

11: Receive resp data

12: Receive resp crc7

13: Receive resp end bit

14: Cmd path wait NCC

15: Wait, cmd-to-response turnaround

FIFO_FULL FIFO is full status. (RO)

FIFO_EMPTY FIFO is empty status. (RO)

FIFO_TX_WATERMARK FIFO reached Transmit watermark level, not qualified with data transfer. (RO)

FIFO_RX_WATERMARK FIFO reached Receive watermark level, not qualified with data transfer. (RO)

Espressif Systems 132 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.22: FIFOTH_REG (0x004C)

(re
se

rve
d)

0

31

DM
A_M

ULT
IP

LE
_T

RANSACTIO
N_S

IZE

0x0

30 28

(re
se

rve
d)

0

27

RX_
W

M
ARK

x x x x x x x x x x x

26 16

(re
se

rve
d)

0 0 0 0

15 12

TX
_W

M
ARK

0x0000

11 0

Reset

DMA_MULTIPLE_TRANSACTION_SIZE Burst size of multiple transaction, should be programmed

same as DMA controller multiple-transaction-size SRC/DEST_MSIZE. 000: 1-byte transfer; 001:

4-byte transfer; 010: 8-byte transfer; 011: 16-byte transfer; 100: 32-byte transfer; 101: 64-byte

transfer; 110: 128-byte transfer; 111: 256-byte transfer. (R/W)

RX_WMARK FIFO threshold watermark level when receiving data to card.When FIFO data count

reaches greater than this number (FIFO_RX_WATERMARK), DMA/FIFO request is raised. During

end of packet, request is generated regardless of threshold programming in order to complete any

remaining data.In non-DMA mode, when receiver FIFO threshold (RXDR) interrupt is enabled, then

interrupt is generated instead of DMA request.During end of packet, interrupt is not generated if

threshold programming is larger than any remaining data. It is responsibility of host to read remain-

ing bytes on seeing Data Transfer Done interrupt.In DMA mode, at end of packet, even if remaining

bytes are less than threshold, DMA request does single transfers to flush out any remaining bytes

before Data Transfer Done interrupt is set. (R/W)

TX_WMARK FIFO threshold watermark level when transmitting data to card. When FIFO data count

is less than or equal to this number (FIFO_TX_WATERMARK), DMA/FIFO request is raised. If In-

terrupt is enabled, then interrupt occurs. During end of packet, request or interrupt is generated,

regardless of threshold programming.In non-DMA mode, when transmit FIFO threshold (TXDR) in-

terrupt is enabled, then interrupt is generated instead of DMA request. During end of packet, on

last interrupt, host is responsible for filling FIFO with only required remaining bytes (not before FIFO

is full or after CIU completes data transfers, because FIFO may not be empty). In DMA mode, at

end of packet, if last transfer is less than burst size, DMA controller does single cycles until required

bytes are transferred. (R/W)

Register 6.23: CDETECT_REG (0x0050)

(re
se

rve
d)

0x0

31 2

CARD_D
ETE

CT_
N

0x0

1 0

Reset

CARD_DETECT_N Value on card_detect_n input ports (1 bit per card), read-only bits.0 represents

presence of card. Only NUM_CARDS number of bits are implemented. (RO)

Espressif Systems 133 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.24: WRTPRT_REG (0x0054)

(re
se

rve
d)

0x0

31 2

W
RITE

_P
ROTE

CT

0x0

1 0

Reset

WRITE_PROTECT Value on card_write_prt input ports (1 bit per card).1 represents write protection.

Only NUM_CARDS number of bits are implemented. (RO)

Register 6.25: TCBCNT_REG (0x005C)

0x000000000

31 0

Reset

TCBCNT_REG Number of bytes transferred by CIU unit to card. (RO)

Register 6.26: TBBCNT_REG (0x0060)

0x000000000

31 0

Reset

TBBCNT_REG Number of bytes transferred between Host/DMA memory and BIU FIFO. (RO)

Register 6.27: DEBNCE_REG (0x0064)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

DEBOUNCE_C
OUNT

0x0000000

23 0

Reset

DEBOUNCE_COUNT Number of host clocks (clk) used by debounce filter logic. The typical de-

bounce time is 5 ~ 25 ms to prevent the card instability when the card is inserted or removed.

(R/W)

Espressif Systems 134 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.28: USRID_REG (0x0068)

0x000000000

31 0

Reset

USRID_REG User identification register, value set by user. Default reset value can be picked by user

while configuring core before synthesis. Can also be used as a scratchpad register by user. (R/W)

Register 6.29: RST_N_REG (0x0078)

(re
se

rve
d)

0

31 2

RST_
CARD_R

ESET

0x1

1 0

Reset

RST_CARD_RESET Hardware reset.1: Active mode; 0: Reset. These bits cause the cards to enter

pre-idle state, which requires them to be re-initialized. CARD_RESET[0] should be set to 1’b0 to

reset card0, CARD_RESET[1] should be set to 1’b0 to reset card1.The number of bits implemented

is restricted to NUM_CARDS. (R/W)

Register 6.30: BMOD_REG (0x0080)

(re
se

rve
d)

0 0

31 11

BM
OD_P

BL

0x0

10 8

BM
OD_D

E

0

7

(re
se

rve
d)

0x00

6 2

BM
OD_F

B

0

1

BM
OD_S

W
R

0

0

Reset

BMOD_PBL Programmable Burst Length. These bits indicate the maximum number of beats to be

performed in one IDMAC transaction. The IDMAC will always attempt to burst as specified in PBL

each time it starts a burst transfer on the host bus. The permissible values are 1, 4, 8, 16, 32, 64,

128 and 256. This value is the mirror of MSIZE of FIFOTH register. In order to change this value,

write the required value to FIFOTH register. This is an encode value as follows:

000: 1-byte transfer; 001: 4-byte transfer; 010: 8-byte transfer; 011: 16-byte transfer; 100: 32-

byte transfer; 101: 64-byte transfer; 110: 128-byte transfer; 111: 256-byte transfer.

PBL is a read-only value and is applicable only for data access, it does not apply to descriptor

access. (R/W)

BMOD_DE IDMAC Enable. When set, the IDMAC is enabled. (R/W)

BMOD_FB Fixed Burst. Controls whether the AHB Master interface performs fixed burst transfers or

not. When set, the AHB will use only SINGLE, INCR4, INCR8 or INCR16 during start of normal

burst transfers. When reset, the AHB will use SINGLE and INCR burst transfer operations. (R/W)

BMOD_SWR Software Reset. When set, the DMA Controller resets all its internal registers. It is

automatically cleared after one clock cycle. (R/W)

Espressif Systems 135 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.31: PLDMND_REG (0x0080)

0x000000000

31 0

Reset

PLDMND_REG Poll Demand. If the OWN bit of a descriptor is not set, the FSM goes to the Suspend

state. The host needs to write any value into this register for the IDMAC FSM to resume normal

descriptor fetch operation. This is a write only register, PD bit is write-only. (WO)

Register 6.32: DBADDR_REG (0x0088)

0x000000000

31 0

Reset

DBADDR_REG Start of Descriptor List. Contains the base address of the First Descriptor. The LSB

bits [1:0] are ignored and taken as all-zero by the IDMAC internally. Hence these LSB bits may be

treated as read-only. (R/W)

Espressif Systems 136 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.33: IDSTS_REG (0x008C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

ID
STS

_F
SM

0x00

16 13

ID
STS

_F
BE_C

ODE

0x0

12 10

ID
STS

_A
IS

0

9

ID
STS

_N
IS

0

8

(re
se

rve
d)

0 0

7 6

ID
STS

_C
ES

0

5

ID
STS

_D
U

0

4

(re
se

rve
d)

0

3

ID
STS

_F
BE

0

2

ID
STS

_R
I

0

1

ID
STS

_T
I

0

0

Reset

IDSTS_FSM DMAC FSM present state: (RO)

0: DMA_IDLE; 1: DMA_SUSPEND; 2: DESC_RD; 3: DESC_CHK; 4: DMA_RD_REQ_WAIT

5: DMA_WR_REQ_WAIT; 6: DMA_RD; 7: DMA_WR; 8: DESC_CLOSE.

IDSTS_FBE_CODE Fatal Bus Error Code. Indicates the type of error that caused a Bus Error. Valid

only when the Fatal Bus Error bit IDSTS[2] is set. This field does not generate an interrupt. (RO)

3b001: Host Abort received during transmission;

3b010: Host Abort received during reception;

Others: Reserved.

IDSTS_AIS Abnormal Interrupt Summary. Logical OR of the following: IDSTS[2] : Fatal Bus Interrupt,

IDSTS[4] : DU bit Interrupt. Only unmasked bits affect this bit. This is a sticky bit and must be

cleared each time a corresponding bit that causes AIS to be set is cleared. Writing 1 clears this

bit. (R/W)

IDSTS_NIS Normal Interrupt Summary. Logical OR of the following: IDSTS[0] : Transmit Interrupt,

IDSTS[1] : Receive Interrupt. Only unmasked bits affect this bit. This is a sticky bit and must be

cleared each time a corresponding bit that causes NIS to be set is cleared. Writing 1 clears this

bit. (R/W)

IDSTS_CES Card Error Summary. Indicates the status of the transaction to/from the card, also

present in RINTSTS. Indicates the logical OR of the following bits: EBE : End Bit Error, RTO :

Response Timeout/Boot Ack Timeout, RCRC : Response CRC, SBE : Start Bit Error, DRTO : Data

Read Timeout/BDS timeout, DCRC : Data CRC for Receive, RE : Response Error.

Writing 1 clears this bit. The abort condition of the IDMAC depends on the setting of this CES bit.

If the CES bit is enabled, then the IDMAC aborts on a response error. (R/W)

IDSTS_DU Descriptor Unavailable Interrupt. This bit is set when the descriptor is unavailable due to

OWN bit = 0 (DES0[31] =0). Writing 1 clears this bit. (R/W)

IDSTS_FBE Fatal Bus Error Interrupt. Indicates that a Bus Error occurred (IDSTS[12:10]) . When this

bit is set, the DMA disables all its bus accesses. Writing 1 clears this bit. (R/W)

IDSTS_RI Receive Interrupt. Indicates the completion of data reception for a descriptor. Writing 1

clears this bit. (R/W)

IDSTS_TI Transmit Interrupt. Indicates that data transmission is finished for a descriptor. Writing 1

clears this bit. (R/W)

Espressif Systems 137 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.34: IDINTEN_REG (0x0090)

(re
se

rve
d)

0 0

31 10

ID
IN

TE
N_A

I

0

9

ID
IN

TE
N_N

I

0

8

(re
se

rve
d)

0 0

7 6

ID
IN

TE
N_C

ES

0

5

ID
IN

TE
N_D

U

0

4

(re
se

rve
d)

0

3

ID
IN

TE
N_F

BE

0

2

ID
IN

TE
N_R

I

0

1

ID
IN

TE
N_T

I

0

0

Reset

IDINTEN_AI Abnormal Interrupt Summary Enable. (R/W)

When set, an abnormal interrupt is enabled. This bit enables the following bits:

IDINTEN[2]: Fatal Bus Error Interrupt;

IDINTEN[4]: DU Interrupt.

IDINTEN_NI Normal Interrupt Summary Enable. (R/W)

When set, a normal interrupt is enabled. When reset, a normal interrupt is disabled. This bit enables

the following bits:

IDINTEN[0]: Transmit Interrupt;

IDINTEN[1]: Receive Interrupt.

IDINTEN_CES Card Error summary Interrupt Enable. When set, it enables the Card Interrupt sum-

mary. (R/W)

IDINTEN_DU Descriptor Unavailable Interrupt. When set along with Abnormal Interrupt Summary

Enable, the DU interrupt is enabled. (R/W)

IDINTEN_FBE Fatal Bus Error Enable. When set with Abnormal Interrupt Summary Enable, the Fatal

Bus Error Interrupt is enabled. When reset, Fatal Bus Error Enable Interrupt is disabled. (R/W)

IDINTEN_RI Receive Interrupt Enable. When set with Normal Interrupt Summary Enable, Receive

Interrupt is enabled. When reset, Receive Interrupt is disabled. (R/W)

IDINTEN_TI Transmit Interrupt Enable. When set with Normal Interrupt Summary Enable, Transmit

Interrupt is enabled. When reset, Transmit Interrupt is disabled. (R/W)

Register 6.35: DSCADDR_REG (0x0094)

0x000000000

31 0

Reset

DSCADDR_REG Host Descriptor Address Pointer, updated by IDMAC during operation and cleared

on reset. This register points to the start address of the current descriptor read by the IDMAC.

(RO)

Espressif Systems 138 ESP32 Technical Reference Manual V1.8

6. SD/MMC HOST CONTROLLER

Register 6.36: BUFADDR_REG (0x0098)

0x000000000

31 0

Reset

BUFADDR_REG Host Buffer Address Pointer, updated by IDMAC during operation and cleared on

reset. This register points to the current Data Buffer Address being accessed by the IDMAC. (RO)

Espressif Systems 139 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

7. I2C Controller

7.1 Overview

An I2C (Inter-Integrated Circuit) bus can be used for communication with several external devices connected to

the same bus as ESP32. The ESP32 has dedicated hardware to communicate with peripherals on the I2C

bus.

7.2 Features

The I2C controller has the following features:

• Supports both master mode and slave mode

• Supports multi-master and multi-slave communication

• Supports standard mode (100 kbit/s)

• Supports fast mode (400 kbit/s)

• Supports 7-bit addressing and 10-bit addressing

• Supports continuous data transmission with disabled Serial Clock Line (SCL)

• Supports programmable digital noise filter

7.3 Functional Description

7.3.1 Introduction

I2C is a two-wire bus, consisting of an SDA and an SCL line. These lines are configured to open the drain output.

The lines are shared by two or more devices, usually one or more masters and one or more slaves.

Communication starts when a master sends out a start condition: it will pull the SDA line low, and will then pull

the SCL line high. It will send out nine clock pulses over the SCL line. The first eight pulses are used to shift out a

byte, consisting of a 7-bit address and a read/write bit. If a slave with this address is active on the bus, the slave

can answer by pulling the SDA low on the ninth clock pulse. The master can now send out more 9-bit clock

pulse clusters and, depending on the read/write bit sent, the device or the master will shift out data on the SDA

line, with the other side acknowledging the transfer by pulling SDA low on the ninth clock pulse. During data

transfer, the SDA line changes only when the SCL line is low. When the master has finished the communication, it

will send a stop condition on the bus by raising SDA, while SCL will already be high.

The ESP32 I2C peripheral can handle the I2C protocol, freeing up the processor cores for other tasks.

Espressif Systems 140 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

7.3.2 Architecture

Figure 23: I2C Master Architecture

Figure 24: I2C Slave Architecture

An I2C controller can operate either in master mode or slave mode. The I2C_MS_MODE register is used to select

the mode. Figure 23 shows the I2C Master architecture, while Figure 24 shows the I2C Slave architecture. The

I2C controller contains the following units:

• RAM, the size of which is 32 x 8 bit and it is directly mapped onto the address space of the CPU cores,

starting at address REG_I2C_BASE+0x100. Each byte of I2C data is stored in a 32-bit word of memory (so

the first byte is at +0x100, the second byte at +0x104, the third byte at +0x108, etc.)

• A CMD_Controller and 16 command registers (cmd0 ~ cmd15), which are used by I2C Master to control

data transmission. One command at a time is executed by the I2C controller.

• SCL_FSM: A state machine that controls the SCL clock. The I2C_SCL_HIGH_PERIOD_REG and

I2C_SCL_LOW_PERIOD_REG registers are used to configure the frequency and duty cycle of the signal on

the SCL line.

• SDA_FSM: A state machine that controls the SDA data line.

• DATA_Shifter which converts the byte data to an outgoing bitstream, or converts an incoming bitstream to

byte data. I2C_RX_LSB_FIRST and I2C_TX_LSB_FIRST can be used for configuring whether the LSB or

MSB is stored or transmitted first.

Espressif Systems 141 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

• SCL_Filter and SDA_Filter: Input noise filter for the I2C_Slave. The filter can be enabled or disabled by

configuring I2C_SCL_FILTER_EN and I2C_SDA_FILTER_EN. The filter can remove line glitches with pulse

width less than I2C_SCL_FILTER_THRES and I2C_SDA_FILTER_THRES ABP clock cycles.

7.3.3 I2C Bus Timing

Figure 25: I2C Sequence Chart

Figure 25 is an I2C sequence chart. When the I2C controller works in master mode, SCL is an output signal. In

contrast, when the I2C controller works in slave mode, SCL becomes an input signal.

According to the I2C protocol, each transmission of data begins with a START condition and ends with a STOP

condition. Data is transmitted by one byte a time, and each byte has an ACK bit. The receiver informs the

transmitter to continue transmission by pulling down SDA, which indicates an ACK. The receiver can also

indicate it wants to stop the transmission by not pulling down the SDA line, thereby not giving an ACK.

Figure 25 also shows the registers that can configure the START bit, STOP bit, SDA hold time, and SDA sample

time.

If the SCL pad is set to the open-drain mode, it will take SCL more time from low level to high level, resulting in a

smaller frequency value than the theoretical value.

7.3.4 I2C cmd Structure

Figure 26: Structure of The I2C Command Register

The Command register is active only in I2C master mode, with its internal structure shown in Figure 26.

CMD_DONE: The CMD_DONE bit of every command can be read by software to tell if the command has been

handled by hardware.

op_code: op_code is used to indicate the command. The I2C controller supports four commands:

Espressif Systems 142 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

• RSTART: op_code = 0 is the RSTART command to control the transmission of a START or RESTART I2C

condition.

• WRITE: op_code = 1 is the WRITE command for the I2C Master to transmit data.

• READ: op_code = 2 is the READ command for the I2C Master to receive data.

• STOP: op_code = 3 is the STOP command to control the transmission of a STOP I2C condition.

• END: op_code = 4 is the END command for continuous data transmission. When the END command is

given, SCL is temporarily disabled to allow software to reload the command and data registers for

subsequent events before resuming. Transmission will then continue seamlessly.

A complete data transmission process begins with an RSTART command, and ends with a STOP

command.

ack_value: When receiving data, this bit is used to indicate whether the receiver will send an ACK after this byte

has been received.

ack_exp: This bit is to set an expected ACK value for the transmitter.

ack_check_en: When transmitting a byte, this bit enables checking the ACK value received against the ack_exp

value. Checking is enabled by 1, while 0 disables it.

byte_num: This register specifies the length of data to be read or written. When the op_code is RSTART, STOP

or END, this value has no meaning.

7.3.5 I2C Master Writes to Slave

Figure 27: I2C Master Writes to Slave with 7-bit Address

Figure 27 shows the I2C Master writing N bytes of data to an external I2C Slave; both are supposed to be ESP32

I2C controllers. According to the I2C protocol, the first byte is the Slave address. As shown in the diagram, the

first byte of the RAM unit has been populated with the Slave’s 7-bit address plus the 1-bit read/write flag. In this

case, the flag is zero, indicating a write operation. The rest of the RAM unit stores N bytes of data that are ready

for transmission. The cmd unit has been populated with the sequence of commands for the operation.

The FIFO offset in RAM can be configured via the TXFIFO_START_ADDR field in the RXFIFO_ST_REG

register.

When all registers are ready, the I2C_TRANS_START bit in I2C_CTR_REG is set to start the transmission. Then,

the I2C Master initiates a START condition to activate the slave devices. I2C Master will then progress to the

Espressif Systems 143 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

WRITE command which will cause N+1 bytes to be fetched from RAM and sent to the Slave. The first of these

bytes is the address byte. Each slave device will compare this to its own. If the addresses do not match, the slave

will ignore the rest of the transmission. If they do match, the slave will ACK the initial byte and the I2C master will

continue sending the rest of the data; when ack_check_en is set to ’one’, Master will check ACK value.

Figure 28: I2C Master Writes to Slave with 10-bit Address

The I2C controller uses 7-bit addressing by default. However, 10-bit addressing can also be used. In the master,

this is done by sending a second I2C address byte after the first address byte. In the slave, the

I2C_SLAVE_ADDR_10BIT_EN register bit can be set to activate a 10-bit addressing. I2C_SLAVE_ADDR is used

to configure I2C Slave’s address, as per usual. Figure 28 shows the equivalent of I2C Master operation writing

N-bytes of data to an I2C Slave with a 10-bit address. Since 10-bit Slave addresses require an extra address

byte, both the byte_num field of the WRITE command and the number of total bytes in RAM increase by

one.

Figure 29: I2C Master Writes to addrM in RAM of Slave with 7-bit Address

One way many I2C Slave devices are designed is by exposing a register block containing various settings. The

I2C Master can write one or more of these registers by sending the Slave a register address. The ESP32 I2C

Slave controller has hardware support for such a scheme.

Specifically, on the Slave, I2C_FIFO_ADDR_CFG_EN can be set so that the I2C Master can write to a specified

register address inside the I2C Slave memory block. Figure 29 shows the I2C Master writing N-bytes of data

byte0 ~ byte(N-1) from the RAM unit to register address M (determined by addrM in RAM unit) with the

Slave.

Espressif Systems 144 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

Figure 30: I2C Master Writes to Slave with 7-bit Address in Two Segments

If the data size exceeds the RAM unit capacity of 32 bytes, the END command can be called to enable

segmented transmission. Figure 30 shows I2C Master writing data in two segments to Slave. The upper part of

the figure shows the configuration of the first sequence of bytes in the transfer. I2C Master will turn off SCL clock,

after executing the END command and after the controller generates the I2C_END_DETECT_INT interrupt.

On receiving I2C_END_DETECT_INT (or polling the CMD_DONE bit of the command register the END was

placed into), software should refresh the contents of the cmd and RAM units, as shown in the lower part of the

figure. Subsequently, it should clear the I2C_END_DETECT_INT interrupt and resume the transaction by setting

the I2C_TRANS_START bit in CTR_CTR_REG.

7.3.6 I2C Master Reads from Slave

Figure 31: I2C Master Reads from Slave with 7-bit Address

Figure 31 shows the I2C Master reading N-bytes of data from an I2C Slave with a 7-bit address. At first, the I2C

Master needs to send the address of the I2C Slave, so cmd1 is a WRITE command. The byte that this command

Espressif Systems 145 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

sends is the I2C slave address plus the R/W flag, which in this case is 1 and, therefore, indicates that this is going

to be a read operation. According to the I2C protocol, I2C Master will not return ACK on receiving the last byte of

data read from the slave; consequently, READ is divided into two segments. The I2C Master replies ACK to N-1

bytes in cmd2 and does not reply ACK to the single byte READ command in cmd3, i.e., the last transmitted

data.

When storing the received data, I2C Master will start from the first address in RAM. Byte0 (Slave address + 1-bit

R/W marker bit) will be overwritten. The FIFO RAM offsets reading and writing data which can then be configured

via the RXFIFO_START_ADDR and TXFIFO_START_ADDR fields in the RXFIFO_ST_REG register.

Figure 32: I2C Master Reads from Slave with 10-bit Address

Figure 32 shows the I2C Master reading data from a slave with a 10-bit address. In the Slave, this mode is

enabled by setting I2C_SLAVE_ADDR_10BIT_EN register. In the Master, two bytes of RAM are used for a 10-bit

address.

Figure 33: I2C Master Reads N Bytes of Data from addrM in Slave with 7-bit Address

Figure 33 shows the I2C Master selecting a register address inside the I2C Slave device and then reading data

from it and subsequent addresses. This mode is enabled by setting the I2C_FIFO_ADDR_CFG_EN register in the

Slave. The internal register address of the Slave, M, is stored in the RAM byte following the address. The WRITE

command has a length of two data bytes to compensate for this.

Espressif Systems 146 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

Figure 34: I2C Master Reads from Slave with 7-bit Address in Two Segments

Figure 34 shows the I2C Master reading N+M bytes of data in two segments from I2C Slave by using the END

command. This allows for more data to be read than what can be fitted into the RAM. The upper part of the figure

shows the configuration of Segment0. The Master will update the configuration of cmd after executing the END

command, as shown in the lower part of the figure. I2C Slave will refresh the data before its RAM is empty.

7.3.7 Interrupts

• I2C_TX_SEND_EMPTY_INT: Triggered when I2C sends more data than nonfifo_tx_thres.

• I2C_RX_REC_FULL_INT: Triggered when I2C receives more data than nonfifo_rx_thres.

• I2C_ACK_ERR_INT: Triggered when I2C receives a wrong ACK bit..

• I2C_TRANS_START_INT: Triggered when I2C sends the START bit.

• I2C_TIME_OUT_INT: Triggered when I2C takes too long to receive data.

• I2C_TRANS_COMPLETE_INT: Triggered when I2C Master has finished STOP command or when I2C Slave

detects STOP bit.

• I2C_MASTER_TRAN_COMP_INT: Triggered when I2C Master sends or receives a byte.

• I2C_ARBITRATION_LOST_INT: Triggered when I2C Master has lost the usage right of I2C Bus.

• I2C_END_DETECT_INT: Triggered when I2C deals with the END command.

Espressif Systems 147 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

7.4 Register Summary

Name Description I2C0 I2C1 Acc

Configuration registers

I2C_SLAVE_ADDR_REG Configures the I2C slave address 0x3FF53010 0x3FF67010 R/W

I2C_RXFIFO_ST_REG FIFO status register 0x3FF53014 0x3FF67014 RO

I2C_FIFO_CONF_REG FIFO configuration register 0x3FF53018 0x3FF67018 R/W

Timing registers

I2C_SDA_HOLD_REG
Configures the hold time after a negative

SCL edge
0x3FF53030 0x3FF67030 R/W

I2C_SDA_SAMPLE_REG
Configures the sample time after a positive

SCL edge
0x3FF53034 0x3FF67034 R/W

I2C_SCL_LOW_PERIOD_REG
Configures the low level width of the SCL

clock
0x3FF53000 0x3FF67000 R/W

I2C_SCL_HIGH_PERIOD_REG
Configures the high level width of the SCL

clock
0x3FF53038 0x3FF67038 R/W

I2C_SCL_START_HOLD_REG
Configures the delay between the SDA and

SCL negative edge for a start condition
0x3FF53040 0x3FF67040 R/W

I2C_SCL_RSTART_SETUP_REG
Configures the delay between the positive

edge of SCL and the negative edge of SDA
0x3FF53044 0x3FF67044 R/W

I2C_SCL_STOP_HOLD_REG
Configures the delay after the SCL clock

edge for a stop condition
0x3FF53048 0x3FF67048 R/W

I2C_SCL_STOP_SETUP_REG
Configures the delay between the SDA and

SCL positive edge for a stop condition
0x3FF5304C 0x3FF6704C R/W

Filter registers

I2C_SCL_FILTER_CFG_REG SCL filter configuration register 0x3FF53050 0x3FF67050 R/W

I2C_SDA_FILTER_CFG_REG SDA filter configuration register 0x3FF53054 0x3FF67054 R/W

Interrupt registers

I2C_INT_RAW_REG Raw interrupt status 0x3FF53020 0x3FF67020 RO

I2C_INT_ENA_REG Interrupt enable bits 0x3FF53028 0x3FF67028 R/W

I2C_INT_CLR_REG Interrupt clear bits 0x3FF53024 0x3FF67024 WO

Command registers

I2C_COMD0_REG I2C command register 0 0x3FF53058 0x3FF67058 R/W

I2C_COMD1_REG I2C command register 1 0x3FF5305C 0x3FF6705C R/W

I2C_COMD2_REG I2C command register 2 0x3FF53060 0x3FF67060 R/W

I2C_COMD3_REG I2C command register 3 0x3FF53064 0x3FF67064 R/W

I2C_COMD4_REG I2C command register 4 0x3FF53068 0x3FF67068 R/W

I2C_COMD5_REG I2C command register 5 0x3FF5306C 0x3FF6706C R/W

I2C_COMD6_REG I2C command register 6 0x3FF53070 0x3FF67070 R/W

I2C_COMD7_REG I2C command register 7 0x3FF53074 0x3FF67074 R/W

I2C_COMD8_REG I2C command register 8 0x3FF53078 0x3FF67078 R/W

I2C_COMD9_REG I2C command register 9 0x3FF5307C 0x3FF6707C R/W

I2C_COMD10_REG I2C command register 10 0x3FF53080 0x3FF67080 R/W

I2C_COMD11_REG I2C command register 11 0x3FF53084 0x3FF67084 R/W

I2C_COMD12_REG I2C command register 12 0x3FF53088 0x3FF67088 R/W

Espressif Systems 148 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

Name Description I2C0 I2C1 Acc

I2C_COMD13_REG I2C command register 13 0x3FF5308C 0x3FF6708C R/W

I2C_COMD14_REG I2C command register 14 0x3FF53090 0x3FF67090 R/W

I2C_COMD15_REG I2C command register 15 0x3FF53094 0x3FF67094 R/W

Espressif Systems 149 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

7.5 Registers

Register 7.1: I2C_SCL_LOW_PERIOD_REG (0x0000)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

I2C
_S

CL_
LO

W
_P

ERIO
D

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

I2C_SCL_LOW_PERIOD This register is used to configure the low-level width of the SCL clock signal,

in APB clock cycles. (R/W)

Register 7.2: I2C_CTR_REG (0x0004)

(re
se

rve
d)

0 0

31 8

I2C
_R

X_
LS

B_F
IR

ST

0

7

I2C
_T

X_
LS

B_F
IR

ST

0

6

I2C
_T

RANS_S
TA

RT

0

5

I2C
_M

S_M
ODE

0

4

(re
se

rve
d)

0

3

I2C
_S

AM
PLE

_S
CL_

LE
VEL

0

2

I2C
_S

CL_
FO

RCE_O
UT

1

1

I2C
_S

DA_F
ORCE_O

UT

1

0

Reset

I2C_RX_LSB_FIRST This bit is used to control the storage mode for received data. (R/W)

1: receive data from the least significant bit;

0: receive data from the most significant bit.

I2C_TX_LSB_FIRST This bit is used to control the sending mode for data needing to be sent. (R/W)

1: send data from the least significant bit;

0: send data from the most significant bit.

I2C_TRANS_START Set this bit to start sending the data in txfifo. (R/W)

I2C_MS_MODE Set this bit to configure the module as an I2C Master. Clear this bit to configure the

module as an I2C Slave. (R/W)

I2C_SAMPLE_SCL_LEVEL 1: sample SDA data on the SCL low level; 0: sample SDA data on the

SCL high level. (R/W)

I2C_SCL_FORCE_OUT 0: direct output; 1: open drain output. (R/W)

I2C_SDA_FORCE_OUT 0: direct output; 1: open drain output. (R/W)

Espressif Systems 150 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

Register 7.3: I2C_SR_REG (0x0008)

(re
se

rve
d)

0

31

I2C
_S

CL_
STA

TE
_L

AST

0 0 0

30 28

(re
se

rve
d)

0

27

I2C
_S

CL_
M

AIN
_S

TA
TE

_L
AST

0 0 0

26 24

I2C
_T

XF
IFO

_C
NT

0 0 0 0 0 0

23 18

(re
se

rve
d)

0 0 0 0

17 14

I2C
_R

XF
IFO

_C
NT

0 0 0 0 0 0

13 8

(re
se

rve
d)

0

7

I2C
_B

YTE
_T

RANS

0

6

I2C
_S

LA
VE_A

DDRESSED

0

5

I2C
_B

US_B
USY

0

4

I2C
_A

RB_L
OST

0

3

I2C
_T

IM
E_O

UT

0

2

I2C
_S

LA
VE_R

W

0

1

I2C
_A

CK_R
EC

0

0

Reset

I2C_TXFIFO_CNT This field stores the amount of received data in RAM. (RO)

I2C_RXFIFO_CNT This field represents the amount of data needed to be sent. (RO)

I2C_BYTE_TRANS This field changes to 1 when one byte is transferred. (RO)

I2C_SLAVE_ADDRESSED When configured as an I2C Slave, and the address sent by the master is

equal to the address of the slave, then this bit will be of high level. (RO)

I2C_BUS_BUSY 1: the I2C bus is busy transferring data; 0: the I2C bus is in idle state. (RO)

I2C_ARB_LOST When the I2C controller loses control of SCL line, this register changes to 1. (RO)

I2C_TIME_OUT When the I2C controller takes more than I2C_TIME_OUT clocks to receive a data bit,

this field changes to 1. (RO)

I2C_SLAVE_RW When in slave mode, 1: master reads from slave; 0: master writes to slave. (RO)

I2C_ACK_REC This register stores the value of the received ACK bit. (RO)

Register 7.4: I2C_TO_REG (0x000c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

I2C
_T

IM
E_O

UT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

I2C_TIME_OUT This register is used to configure the timeout for receiving a data bit in APB clock

cycles. (R/W)

Espressif Systems 151 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

Register 7.5: I2C_SLAVE_ADDR_REG (0x0010)

I2C
_S

LA
VE_A

DDR_1
0B

IT_
EN

0

31

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 15

I2C
_S

LA
VE_A

DDR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0

Reset

I2C_SLAVE_ADDR_10BIT_EN This field is used to enable the slave 10-bit addressing mode. (R/W)

I2C_SLAVE_ADDR When configured as an I2C Slave, this field is used to configure the slave address.

(R/W)

Register 7.6: I2C_RXFIFO_ST_REG (0x0014)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

I2C
_R

XF
IFO

_T
XF

IFO
_E

ND_A
DDR

0 0 0 0 0

19 15

I2C
_R

XF
IFO

_T
XF

IFO
_S

TA
RT_

ADDR

0 0 0 0 0

14 10

I2C
_R

XF
IFO

_E
ND_A

DDR

0 0 0 0 0

9 5

I2C
_R

XF
IFO

_S
TA

RT_
ADDR

0 0 0 0 0

4 0

Reset

I2C_TXFIFO_END_ADDR This is the offset address of the last sent data, as described in non-

fifo_tx_thres register. (RO)

I2C_TXFIFO_START_ADDR This is the offset address of the first sent data, as described in non-

fifo_tx_thres register. (RO)

I2C_RXFIFO_END_ADDR This is the offset address of the first received data, as described in non-

fifo_rx_thres_register. (RO)

I2C_RXFIFO_START_ADDR This is the offset address of the last received data, as described in non-

fifo_rx_thres_register. (RO)

Espressif Systems 152 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

Register 7.7: I2C_FIFO_CONF_REG (0x0018)

(re
se

rve
d)

0 0 0 0 0 0

31 26

I2C
_N

ONFIF
O_T

X_
TH

RES

0x15

25 20

I2C
_N

ONFIF
O_R

X_
TH

RES

0x15

19 14

(re
se

rve
d)

0 0

13 12

I2C
_F

IFO
_A

DDR_C
FG

_E
N

0

11

I2C
_N

ONFIF
O_E

N

0

10

Reset

I2C_NONFIFO_TX_THRES When I2C sends more than nonfifo_tx_thres bytes of data, it will generate

a tx_send_empty_int_raw interrupt and update the current offset address of the sent data. (R/W)

I2C_NONFIFO_RX_THRES When I2C receives more than nonfifo_rx_thres bytes of data, it will gen-

erate a rx_send_full_int_raw interrupt and update the current offset address of the received data.

(R/W)

I2C_FIFO_ADDR_CFG_EN When this bit is set to 1, the byte received after the I2C address byte

represents the offset address in the I2C Slave RAM. (R/W)

I2C_NONFIFO_EN Set this bit to enble APB nonfifo access. (R/W)

Espressif Systems 153 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

Register 7.8: I2C_INT_RAW_REG (0x0020)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

I2C
_T

X_
SEND_E

M
PTY

_IN
T_

RAW

0

12

I2C
_R

X_
REC_F

ULL
_IN

T_
RAW

0

11

I2C
_A

CK_E
RR_IN

T_
RAW

0

10

I2C
_T

RANS_S
TA

RT_
IN

T_
RAW

0

9

I2C
_T

IM
E_O

UT_
IN

T_
RAW

0

8

I2C
_T

RANS_C
OM

PLE
TE

_IN
T_

RAW

0

7

I2C
_M

ASTE
R_T

RAN_C
OM

P_IN
T_

RAW

0

6

I2C
_A

RBITR
AT

IO
N_L

OST_
IN

T_
RAW

0

5

I2C
_E

ND_D
ETE

CT_
IN

T_
RAW

0

3

Reset

I2C_TX_SEND_EMPTY_INT_RAW The raw interrupt status bit for the I2C_TX_SEND_EMPTY_INT

interrupt. (RO)

I2C_RX_REC_FULL_INT_RAW The raw interrupt status bit for the I2C_RX_REC_FULL_INT interrupt.

(RO)

I2C_ACK_ERR_INT_RAW The raw interrupt status bit for the I2C_ACK_ERR_INT interrupt. (RO)

I2C_TRANS_START_INT_RAW The raw interrupt status bit for the I2C_TRANS_START_INT interrupt.

(RO)

I2C_TIME_OUT_INT_RAW The raw interrupt status bit for the I2C_TIME_OUT_INT interrupt. (RO)

I2C_TRANS_COMPLETE_INT_RAW The raw interrupt status bit for the

I2C_TRANS_COMPLETE_INT interrupt. (RO)

I2C_MASTER_TRAN_COMP_INT_RAW The raw interrupt status bit for the

I2C_MASTER_TRAN_COMP_INT interrupt. (RO)

I2C_ARBITRATION_LOST_INT_RAW The raw interrupt status bit for the

I2C_ARBITRATION_LOST_INT interrupt. (RO)

I2C_END_DETECT_INT_RAW The raw interrupt status bit for the I2C_END_DETECT_INT interrupt.

(RO)

Espressif Systems 154 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

Register 7.9: I2C_INT_CLR_REG (0x0024)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

I2C
_T

X_
SEND_E

M
PTY

_IN
T_

CLR

0

12

I2C
_R

X_
REC_F

ULL
_IN

T_
CLR

0

11

I2C
_A

CK_E
RR_IN

T_
CLR

0

10

I2C
_T

RANS_S
TA

RT_
IN

T_
CLR

0

9

I2C
_T

IM
E_O

UT_
IN

T_
CLR

0

8

I2C
_T

RANS_C
OM

PLE
TE

_IN
T_

CLR

0

7

I2C
_M

ASTE
R_T

RAN_C
OM

P_IN
T_

CLR

0

6

I2C
_A

RBITR
AT

IO
N_L

OST_
IN

T_
CLR

0

5

I2C
_E

ND_D
ETE

CT_
IN

T_
CLR

0

3

Reset

I2C_TX_SEND_EMPTY_INT_CLR Set this bit to clear the I2C_TX_SEND_EMPTY_INT interrupt.

(WO)

I2C_RX_REC_FULL_INT_CLR Set this bit to clear the I2C_RX_REC_FULL_INT interrupt. (WO)

I2C_ACK_ERR_INT_CLR Set this bit to clear the I2C_ACK_ERR_INT interrupt. (WO)

I2C_TRANS_START_INT_CLR Set this bit to clear the I2C_TRANS_START_INT interrupt. (WO)

I2C_TIME_OUT_INT_CLR Set this bit to clear the I2C_TIME_OUT_INT interrupt. (WO)

I2C_TRANS_COMPLETE_INT_CLR Set this bit to clear the I2C_TRANS_COMPLETE_INT interrupt.

(WO)

I2C_MASTER_TRAN_COMP_INT_CLR Set this bit to clear the I2C_MASTER_TRAN_COMP_INT in-

terrupt. (WO)

I2C_ARBITRATION_LOST_INT_CLR Set this bit to clear the I2C_ARBITRATION_LOST_INT inter-

rupt. (WO)

I2C_END_DETECT_INT_CLR Set this bit to clear the I2C_END_DETECT_INT interrupt. (WO)

Espressif Systems 155 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

Register 7.10: I2C_INT_ENA_REG (0x0028)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

I2C
_T

X_
SEND_E

M
PTY

_IN
T_

ENA

0

12

I2C
_R

X_
REC_F

ULL
_IN

T_
ENA

0

11

I2C
_A

CK_E
RR_IN

T_
ENA

0

10

I2C
_T

RANS_S
TA

RT_
IN

T_
ENA

0

9

I2C
_T

IM
E_O

UT_
IN

T_
ENA

0

8

I2C
_T

RANS_C
OM

PLE
TE

_IN
T_

ENA

0

7

I2C
_M

ASTE
R_T

RAN_C
OM

P_IN
T_

ENA

0

6

I2C
_A

RBITR
AT

IO
N_L

OST_
IN

T_
ENA

0

5

I2C
_E

ND_D
ETE

CT_
IN

T_
ENA

0

3

Reset

I2C_TX_SEND_EMPTY_INT_ENA The interrupt enable bit for the I2C_TX_SEND_EMPTY_INT inter-

rupt. (R/W)

I2C_RX_REC_FULL_INT_ENA The interrupt enable bit for the I2C_RX_REC_FULL_INT interrupt.

(R/W)

I2C_ACK_ERR_INT_ENA The interrupt enable bit for the I2C_ACK_ERR_INT interrupt. (R/W)

I2C_TRANS_START_INT_ENA The interrupt enable bit for the I2C_TRANS_START_INT interrupt.

(R/W)

I2C_TIME_OUT_INT_ENA The interrupt enable bit for the I2C_TIME_OUT_INT interrupt. (R/W)

I2C_TRANS_COMPLETE_INT_ENA The interrupt enable bit for the I2C_TRANS_COMPLETE_INT

interrupt. (R/W)

I2C_MASTER_TRAN_COMP_INT_ENA The interrupt enable bit for the

I2C_MASTER_TRAN_COMP_INT interrupt. (R/W)

I2C_ARBITRATION_LOST_INT_ENA The interrupt enable bit for the I2C_ARBITRATION_LOST_INT

interrupt. (R/W)

I2C_END_DETECT_INT_ENA The interrupt enable bit for the I2C_END_DETECT_INT interrupt. (R/W)

Espressif Systems 156 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

Register 7.11: I2C_INT_STATUS_REG (0x002c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

I2C
_T

X_
SEND_E

M
PTY

_IN
T_

ST

0

12

I2C
_R

X_
REC_F

ULL
_IN

T_
ST

0

11

I2C
_A

CK_E
RR_IN

T_
ST

0

10

I2C
_T

RANS_S
TA

RT_
IN

T_
ST

0

9

I2C
_T

IM
E_O

UT_
IN

T_
ST

0

8

I2C
_T

RANS_C
OM

PLE
TE

_IN
T_

ST

0

7

I2C
_M

ASTE
R_T

RAN_C
OM

P_IN
T_

ST

0

6

I2C
_A

RBITR
AT

IO
N_L

OST_
IN

T_
ST

0

5

I2C
_E

ND_D
ETE

CT_
IN

T_
ST

0

3

Reset

I2C_TX_SEND_EMPTY_INT_ST The masked interrupt status bit for the I2C_TX_SEND_EMPTY_INT

interrupt. (RO)

I2C_RX_REC_FULL_INT_ST The masked interrupt status bit for the I2C_RX_REC_FULL_INT inter-

rupt. (RO)

I2C_ACK_ERR_INT_ST The masked interrupt status bit for the I2C_ACK_ERR_INT interrupt. (RO)

I2C_TRANS_START_INT_ST The masked interrupt status bit for the I2C_TRANS_START_INT inter-

rupt. (RO)

I2C_TIME_OUT_INT_ST The masked interrupt status bit for the I2C_TIME_OUT_INT interrupt. (RO)

I2C_TRANS_COMPLETE_INT_ST The masked interrupt status bit for the

I2C_TRANS_COMPLETE_INT interrupt. (RO)

I2C_MASTER_TRAN_COMP_INT_ST The masked interrupt status bit for the

I2C_MASTER_TRAN_COMP_INT interrupt. (RO)

I2C_ARBITRATION_LOST_INT_ST The masked interrupt status bit for the

I2C_ARBITRATION_LOST_INT interrupt. (RO)

I2C_END_DETECT_INT_ST The masked interrupt status bit for the I2C_END_DETECT_INT interrupt.

(RO)

Register 7.12: I2C_SDA_HOLD_REG (0x0030)

(re
se

rve
d)

0 0

31 10

I2C
_S

DA_H
OLD

_T
IM

E

0 0 0 0 0 0 0 0 0 0

9 0

Reset

I2C_SDA_HOLD_TIME This register is used to configure the time to hold the data after the negative

edge of SCL, in APB clock cycles. (R/W)

Espressif Systems 157 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

Register 7.13: I2C_SDA_SAMPLE_REG (0x0034)

(re
se

rve
d)

0 0

31 10

I2C
_S

DA_S
AM

PLE
_T

IM
E

0 0 0 0 0 0 0 0 0 0

9 0

Reset

I2C_SDA_SAMPLE_TIME This register is used to configure the delay between the positive edge of

SCL and the I2C controller sampling SDA, in APB clock cycles. (R/W)

Register 7.14: I2C_SCL_HIGH_PERIOD_REG (0x0038)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

I2C
_S

CL_
HIG

H_P
ERIO

D

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

I2C_SCL_HIGH_PERIOD This register is used to configure how long SCL is kept high, in APB clock

cycles. (R/W)

Register 7.15: I2C_SCL_START_HOLD_REG (0x0040)

(re
se

rve
d)

0 0

31 10

I2C
_S

CL_
STA

RT_
HOLD

_T
IM

E

0 0 0 0 0 0 1 0 0 0

9 0

Reset

I2C_SCL_START_HOLD_TIME This register is used to configure the time between the negative edge

of SDA and the negative edge of SCL for a START condition, in APB clock cycles. (R/W)

Espressif Systems 158 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

Register 7.16: I2C_SCL_RSTART_SETUP_REG (0x0044)

(re
se

rve
d)

0 0

31 10

I2C
_S

CL_
RSTA

RT_
SETU

P_T
IM

E

0 0 0 0 0 0 1 0 0 0

9 0

Reset

I2C_SCL_RSTART_SETUP_TIME This register is used to configure the time between the positive

edge of SCL and the negative edge of SDA for a RESTART condition, in APB clock cycles. (R/W)

Register 7.17: I2C_SCL_STOP_HOLD_REG (0x0048)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

I2C
_S

CL_
STO

P_H
OLD

_T
IM

E

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

I2C_SCL_STOP_HOLD_TIME This register is used to configure the delay after the STOP condition’s

positive edge, in APB clock cycles. (R/W)

Register 7.18: I2C_SCL_STOP_SETUP_REG (0x004C)

(re
se

rve
d)

0 0

31 10

I2C
_S

CL_
STO

P_S
ETU

P_T
IM

E

0 0 0 0 0 0 0 0 0 0

9 0

Reset

I2C_SCL_STOP_SETUP_TIME This register is used to configure the time between the positive edge

of SCL and the positive edge of SDA, in APB clock cycles. (R/W)

Espressif Systems 159 ESP32 Technical Reference Manual V1.8

7. I2C CONTROLLER

Register 7.19: I2C_SCL_FILTER_CFG_REG (0x0050)

(re
se

rve
d)

0 0

31 4

I2C
_S

CL_
FIL

TE
R_E

N

1

3

I2C
_S

CL_
FIL

TE
R_T

HRES

0 0 0

2 0

Reset

I2C_SCL_FILTER_EN This is the filter enable bit for SCL. (R/W)

I2C_SCL_FILTER_THRES When a pulse on the SCL input has smaller width than this register value

in APB clock cycles, the I2C controller will ignore that pulse. (R/W)

Register 7.20: I2C_SDA_FILTER_CFG_REG (0x0054)

(re
se

rve
d)

0 0

31 4

I2C
_S

DA_F
ILT

ER_E
N

1

3

I2C
_S

DA_F
ILT

ER_T
HRES

0 0 0

2 0

Reset

I2C_SDA_FILTER_EN This is the filter enable bit for SDA. (R/W)

I2C_SDA_FILTER_THRES When a pulse on the SDA input has smaller width than this register value

in APB clock cycles, the I2C controller will ignore that pulse. (R/W)

Register 7.21: I2C_COMDn_REG (n: 0-15) (0x58+4*n)

I2C
_C

OM
M

ANDn
_D

ONE

0

31

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 14

I2C
_C

OM
M

ANDn

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

I2C_COMMANDn_DONE When command n is done in I2C Master mode, this bit changes to high

level. (R/W)

I2C_COMMANDn This is the content of command n. It consists of three parts: (R/W)

op_code is the command, 0: RSTART; 1: WRITE; 2: READ; 3: STOP; 4: END.

Byte_num represents the number of bytes that need to be sent or received.

ack_check_en, ack_exp and ack are used to control the ACK bit. See I2C cmd structure for more

information.

Espressif Systems 160 ESP32 Technical Reference Manual V1.8

8. I2S

8. I2S

8.1 Overview

The I2S bus provides a flexible communication interface for streaming digital data in multimedia applications,

especially digital audio applications. The ESP32 includes two I2S interfaces: I2S0 and I2S1.

The I2S standard bus defines three signals: a clock signal, a channel selection signal, and a serial data signal. A

basic I2S data bus has one master and one slave. The roles remain unchanged throughout the communication.

The I2S modules on the ESP32 provide separate transmit and receive channels for high performance.

Figure 35: I2S System Block Diagram

Figure 35 is the system block diagram of the ESP32 I2S module. In the figure above, the value of ”n” can be

either 0 or 1. There are two independent I2S modules embedded in ESP32, namely I2S0 and I2S1. Each I2S

module contains a Tx (transmit) unit and a Rx (receive) unit. Both the Tx unit and the Rx unit have a three-wire

interface that includes a clock line, a channel selection line and a serial data line. The serial data line of the Tx unit

is fixed as output, and the serial data line of the receive unit is fixed as input. The clock line and the channel

selection line of the Tx and Rx units can be configured to both master transmitting mode and slave receiving

mode. In the LCD mode, the serial data line extends to the parallel data bus. Both the Tx unit and the Rx unit

have a 32-bit-wide FIFO with a depth of 64. Besides, only I2S0 supports on-chip DAC/ADC modes, as well as

receiving and transmitting PDM signals.

The right side of Figure 35 shows the signal bus of the I2S module. The signal naming rule of the Rx and Tx units

is I2SnA_B_C, where ”n” stands for either I2S0 or I2S1; ”A” represents the direction of I2S module’s data bus

signal, ”I” represents input, ”O” represents output; ”B” represents signal function; ”C” represents the signal

direction, ”in” means that the signal is input into the I2S module, while ”out” means that the I2S module outputs

the signal. For a detailed description of the I2S signal bus, please refer to Table 33.

Espressif Systems 161 ESP32 Technical Reference Manual V1.8

8. I2S

Table 33: I2S Signal Bus Description

Signal Bus Signal Direction Data Signal Direction

I2SnI_BCK_in In slave mode, I2S module accepts signals. I2S module receives data.

I2SnI_BCK_out In master mode, I2S module outputs signals. I2S module receives data.

I2SnI_WS_in In slave mode, I2S module accepts signals. I2S module receives data.

I2SnI_WS_out In master mode, I2S module outputs signals. I2S module receives data.

I2SnI_Data_in I2S module accepts signals.

In I2S mode, I2SnI_Data_in[15] is the

serial data bus of I2S. In LCD mode,

the data bus width can be configured

as needed.

I2SnO_Data_out I2S module outputs signals.

In I2S mode, I2SnO_Data_out[23] is

the serial data bus of I2S. In LCD

mode, the data bus width can be

configured as needed.

I2SnO_BCK_in In slave mode, I2S module accepts signals. I2S module sends data.

I2SnO_BCK_out In master mode, I2S module outputs signals. I2S module sends data.

I2SnO_WS_in In slave mode, I2S module accepts signals. I2S module sends data.

I2SnO_WS_out In master mode, I2S module outputs signals. I2S module sends data.

I2Sn_CLK I2S module outputs signals.
It is used as a clock source for pe-

ripheral chips.

I2Sn_H_SYNC

In Camera mode, I2S module accepts signals. The signals are sent from the Camera.I2Sn_V_SYNC

I2Sn_H_ENABLE

Table 33 describes the signal bus of the I2S module. Except for the I2Sn_CLK signal, all other signals are

mapped to the chip pin via the GPIO matrix and IO MUX. The I2Sn_CLK signal is mapped to the chip pin via the

IO_MUX. For details, please refer to the chapter about IO_MUX and the GPIO Matrix.

8.2 Features

I2S mode

• Configurable high-precision output clock

• Full-duplex and half-duplex data transmit and receive modes

• Supports multiple digital audio standards

• Embedded A-law compression/decompression module

• Configurable clock signal

• Supports PDM signal input and output

• Configurable data transmit and receive modes

LCD mode

• Supports multiple LCD modes, including external LCD

• Supports external Camera

Espressif Systems 162 ESP32 Technical Reference Manual V1.8

8. I2S

• Supports on-chip DAC/ADC modes

I2S interrupts

• Standard I2S interface interrupts

• I2S DMA interface interrupts

8.3 The Clock of I2S Module

As is shown in Figure 36, I2Sn_CLK, as the master clock of I2S module, is derived from the 160 MHz clock

PLL_D2_CLK or the configurable analog PLL output clock APLL_CLK. The serial clock (BCK) of the I2S module

is derived from I2Sn_CLK. The I2S_CLKA_ENA bit of register I2S_CLKM_CONF_REG is used to select either

PLL_D2_CLK or APLL_CLK as the clock source for I2Sn. PLL_D2_CLK is used as the clock source for I2Sn, by

default. For high performance audio applications, the analog PLL output clock source APLL_CLK must be used

to acquire highly accurate I2Sn_CLK and BCK. For further details, please refer to the chapter entitled Reset and

Clock.

Figure 36: I2S Clock

The relation between I2Sn_CLK frequency fi2s and the divider clock source frequency fpll can be seen in the

equation below:

fi2s =
fpll

N + b
a

”N” corresponds to the REG _CLKM_DIV_NUM [7: 0] bits of register I2S_CLKM_CONF_REG , ”b” is the

I2S_CLKM_DIV_B[5:0] bit and ”a” is the I2S_CLKM_DIV_A[5:0] bit.

In master mode, the serial clock BCK in the I2S module is derived from I2Sn_CLK, that is:

fBCK =
fi2s

M

In master transmitting mode, ”M” is the I2S_TX_BCK_DIV_NUM[5:0] bit of register

I2S_SAMPLE_RATE_CONF_REG. In master receiving mode, ”M” is the I2S_RX_BCK_DIV_NUM[5:0] bit of

register I2S_SAMPLE_RATE_CONF_REG.

8.4 I2S Mode

The ESP32 I2S module integrates an A-law compression/decompression module to enable

compression/decompression of the received audio data. The RX_PCM_BYPASS bit and the TX_PCM_BYPASS

bit of register I2S_CONF1_REG should be cleared when using the A-law compression/decompression

module.

Espressif Systems 163 ESP32 Technical Reference Manual V1.8

8. I2S

8.4.1 Supported Audio Standards

In the I2S bus, BCK is the serial clock, WS is the left- /right-channel selection signal (also called word select

signal), and SD is the serial data signal for transmitting/receiving digital audio data. WS and SD signals in the I2S

module change on the falling edge of BCK, while the SD signal can be sampled on the rising edge of BCK. If the

I2S_RX_RIGHT_FIRST bit and the I2S_TX_RIGHT_FIRST bit of register I2S_CONF_REG are set to 1, the I2S

module is configured to receive and transmit right-channel data first. Otherwise, the I2S module receives and

transmits left-channel data first.

8.4.1.1 Philips Standard

Figure 37: Philips Standard

As is shown in Figure 37, the Philips I2S bus specifications require that the WS signal starts to change a BCK

clock cycle earlier than the SD signal, which means that the WS signal takes effect a clock cycle before the first

bit of the current channel-data transmission, while the WS signal continues until the end of the current

channel-data transmission. The SD signal line transmits the most significant bit of audio data first. If the

I2S_RX_MSB_SHIFT bit and the I2S_TX_MSB_SHIFT bit of register I2S_CONF_REG are set to 1, respectively,

the I2S module will use the Philips standard when receiving and transmitting data.

8.4.1.2 MSB Alignment Standard

Figure 38: MSB Alignment Standard

The MSB alignment standard is shown in Figure 38. WS and SD signals both change simultaneously on the

falling edge of BCK under the MSB alignment standard. The WS signal continues until the end of the current

channel-data transmission, and the SD signal line transmits the most significant bit of audio data first. If the

I2S_RX_MSB_SHIFT and I2S_TX_MSB_SHIFT bits of register I2S_CONF_REG are cleared, the I2S module will

use the MSB alignment standard when receiving and transmitting data.

Espressif Systems 164 ESP32 Technical Reference Manual V1.8

8. I2S

8.4.1.3 PCM Standard

As is shown in Figure 39, under the short frame synchronization mode of the PCM standard, the WS signal starts

to change a BCK clock cycle earlier than the SD signal, which means that the WS signal takes effect a clock

cycle earlier than the first bit of the current channel-data transmission and continues for one extra BCK clock

cycle. The SD signal line transmits the most significant bit of audio data first. If the I2S_RX_SHORT_SYNC and

I2S_TX_SHORT_SYNC bits of register I2S_CONF_REG are set, the I2S module will receive and transmit data in

the short frame synchronization mode.

Figure 39: PCM Standard

8.4.2 Module Reset

The four low-order bits in register I2S_CONF_REG, that is, I2S_TX_RESET, I2S_RX_RESET,

I2S_TX_FIFO_RESET and I2S_RX_FIFO_RESET reset the receive module, the transmit module and the

corresponding FIFO buffer, respectively. In order to finish a reset operation, the corresponding bit should be set

and then cleared by software.

8.4.3 FIFO Operation

The data read/write packet length for a FIFO operation is 32 bits. The data packet format for the FIFO buffer can

be configured using configuration registers. As shown in Figure 35, both sent and received data should be

written into FIFO first and then read from FIFO. There are two approaches to accessing the FIFO; one is to

directly access the FIFO using a CPU, the other is to access the FIFO using a DMA controller.

Generally, both the I2S_RX_FIFO_MOD_FORCE_EN bit and I2S_TX_FIFO_MOD_FORCE_EN bits of register

I2S_FIFO_CONF_REG should be set to 1. I2S_TX_DATA_NUM[5:0] bit and I2S_RX_DATA_NUM[5:0] are used to

control the length of the data that have been sent, received and buffered. Hardware inspects the received-data

length RX_LEN and the transmitted-data length TX_LEN. Both the received and the transmitted data are buffered

in the FIFO method.

When RX_LEN is greater than I2S_RX_DATA_NUM[5:0], the received data, which is buffered in FIFO, has

reached the set threshold and needs to be read out to prevent an overflow. When TX_LEN is less than

I2S_TX_DATA_NUM[5:0], the transmitted data, which is buffered in FIFO, has not reached the set threshold and

software can continue feeding data into FIFO.

8.4.4 Sending Data

The ESP32 I2S module carries out a data-transmit operation in three stages:

• Read data from internal storage and transfer it to FIFO

• Read data to be sent from FIFO

Espressif Systems 165 ESP32 Technical Reference Manual V1.8

8. I2S

• Clock out data serially, or in parallel, as configured by the user

Figure 40: Tx FIFO Data Mode

Table 34: Register Configuration

I2S_TX_FIFO_MOD[2:0] Description

Tx FIFO mode0

0 16-bit dual channel data

2 32-bit dual channel data

3 32-bit single channel data

Tx FIFO mode1 1 16-bit single channel data

At the first stage, there are two modes for data to be sent and written into FIFO. In Tx FIFO mode0, the Tx

data-to-be-sent are written into FIFO according to the time order. In Tx FIFO mode1, the data-to-be-sent are

divided into 16 high- and 16 low-order bits. Then, both the 16 high- and 16 low-order bits are recomposed and

written into FIFO. The details are shown in Figure 40 with the corresponding registers listed in Table 34. D
′

n

consists of 16 high-order bits of Dn and 16 zeros. D
′′

n consists of 16 low-order bits of Dn and 16 zeros. That is

to say, D
′

n = {Dn[31 : 16], 16′h0}, D
′′

n = {Dn[15 : 0], 16′h0}.

At the second stage, the system reads data that will be sent from FIFO, according to the relevant register

configuration. The mode in which the system reads data from FIFO is relevant to the configuration of

I2S_TX_FIFO_MOD[2.0] and I2S_TX_CHAN_MOD[2:0]. I2S_TX_FIFO_MOD[2.0] determines whether the data are

16-bit or 32-bit, as shown in Table 34, while I2S_TX_CHAN_MOD[2:0] determines the format of the

data-to-be-sent, as shown in Table 35.

Table 35: Send Channel Mode

I2S_TX_CHAN_MOD[2:0] Description

0 Dual channel mode

1

Mono mode

When I2S_TX_MSB_RIGHT equals 0, the left-channel data are ”holding”

their values and the right-channel data change into the left-channel data.

When I2S_TX_MSB_RIGHT equals 1, the right-channel data are ”holding”

their values and the left-channel data change into the right-channel data.

2

Mono mode

When I2S_TX_MSB_RIGHT equals 0, the right-channel data are ”holding”

their values and the left-channel data change into the right-channel data.

When I2S_TX_MSB_RIGHT equals 1, the left-channel data are ”holding”

their values and the right-channel data change into the left-channel data.

Espressif Systems 166 ESP32 Technical Reference Manual V1.8

8. I2S

I2S_TX_CHAN_MOD[2:0] Description

3

Mono mode

When I2S_TX_MSB_RIGHT equals 0, the left-channel data are constants

in the range of REG[31:0].

When I2S_TX_MSB_RIGHT equals 1, the right-channel data are constants

in the range of REG[31:0].

4

Mono mode

When I2S_TX_MSB_RIGHT equals 0, the right-channel data are constants

in the range of REG[31:0].

When I2S_TX_MSB_RIGHT equals 1, the left-channel data are constants

in the range of REG[31:0].

REG[31:0] is the value of register I2S_CONF_SINGLE_DATA_REG[31:0].

The output of the third stage is determined by the mode of the I2S and I2S_TX_BITS_MOD[5:0] bits of register

I2S_SAMPLE_RATE_CONF_REG.

8.4.5 Receiving Data

The data-receive phase of the ESP32 I2S module consists of another three stages:

• The input serial-bit stream is transformed into a 64-bit parallel-data stream in I2S mode. In LCD mode, the

input parallel-data stream will be extended to a 64-bit parallel-data stream.

• Received data are written into FIFO.

• Data are read from FIFO by CPU/DMA and written into the internal memory.

At the first stage of receiving data, the received-data stream is expanded to a zero-padded parallel-data stream

with 32 high-order bits and 32 low-order bits, according to the level of the I2SnI_WS_out (or I2SnI_WS_in) signal.

The I2S_RX_MSB_RIGHT bit of register I2S_CONF_REG is used to determine how the data are to be

expanded.

Figure 41: The First Stage of Receiving Data

For example, as is shown in Figure 41, if the width of serial data is 16 bits, when I2S_RX_RIGHT_FIRST equals 1,

Data0 will be discarded and I2S will start receiving data from Data1. If I2S_RX_MSB_RIGHT equals 1, data of the

first stage would be {0xFEDC0000, 0x32100000}. If I2S_RX_MSB_RIGHT equals 0, data of the first stage would

be {0x32100000, 0xFEDC0000}. When I2S_RX_RIGHT_FIRST equals 0, I2S will start receiving data from Data0.

If I2S_RX_MSB_RIGHT equals 1, data of the first stage would be {0xFEDC0000, 0x76540000}. If

I2S_RX_MSB_RIGHT equals 0, data of the first stage would be {0x76540000, 0xFEDC0000}.

As is shown in Table 36 and Figure 42, at the second stage, the received data of the Rx unit is written into FIFO.

There are four modes of writing received data into FIFO. Each mode corresponds to a value of

I2S_RX_FIFO_MOD[2:0] bit.

Espressif Systems 167 ESP32 Technical Reference Manual V1.8

8. I2S

Table 36: Modes of Writing Received Data into FIFO and the Corresponding Register Configuration

I2S_RX_FIFO_MOD[2:0] Data format

0 16-bit dual channel data

1 16-bit single channel data

2 32-bit dual channel data

3 32-bit single channel data

Figure 42: Modes of Writing Received Data into FIFO

At the third stage, CPU or DMA will read data from FIFO and write them into the internal memory directly. The

register configuration that each mode corresponds to is shown in Table 37.

Table 37: The Register Configuration to Which the Four Modes Correspond

I2S_RX_MSB_RIGHT I2S_RX_CHAN_MOD mode0 mode1 mode2 mode3

0

0

left channel

+ right channel

-

left channel

+ right channel

-

1
left channel +

left channel

left channel +

left channel

2
right channel +

right channel

right channel +

right channel

3 - -

1

0

right channel

+ left channel

-

right channel

+ left channel

-

1
right channel +

right channel

right channel +

right channel

2
left channel +

left channel

left channel +

left channel

3 - -

8.4.6 I2S Master/Slave Mode

The ESP32 I2S module can be configured to act as a master or slave device on the I2S bus. The module

supports slave transmitter and receiver configurations in addition to master transmitter and receiver

configurations. All these modes can support full-duplex and half-duplex communication over the I2S bus.

I2S_RX_SLAVE_MOD bit and I2S_TX_SLAVE_MOD bit of register I2S_CONF_REG can configure I2S to slave

receiving mode and slave transmitting mode, respectively.

Espressif Systems 168 ESP32 Technical Reference Manual V1.8

8. I2S

I2S_TX_START bit of register I2S_CONF_REG is used to enable transmission. When I2S is in master transmitting

mode and this bit is set, the module will keep driving the clock signal and data of left and right channels. If FIFO

sends out all the buffered data and there are no new data to shift, the last batch of data will be looped on the

data line. When this bit is reset, master will stop driving clock and data lines. When I2S is configured to slave

transmitting mode and this bit is set, the module will wait for the master BCK clock to enable a transmit

operation.

The I2S_RX_START bit of register I2S_CONF_REG is used to enable a receive operation. When I2S is in master

transmitting mode and this bit is set, the module will keep driving the clock signal and sampling the input data

stream until this bit is reset. If I2S is configured to slave receiving mode and this bit is set, the receiving module

will wait for the master BCK clock to enable a receiving operation.

8.4.7 I2S PDM

As is shown in Figure 35, ESP32 I2S0 allows for pulse density modulation (PDM), which enables fast conversion

between pulse code modulation (PCM) and PDM signals.

The output clock of PDM is mapped to the I2S0*_WS_out signal. Its configuration is identical to I2S’s BCK.

Please refer to section 8.3, ”The Clock of I2S Module”, for further details. The bit width for both received and

transmitted I2S PCM signals is 16 bits.

Figure 43: PDM Transmitting Module

The PDM transmitting module is used to convert PCM signals into PDM signals, as shown in Figure 43. HPF is a

high-speed channel filter, and LPF is a low-speed channel filter. The PDM signal is derived from the PCM signal,

after upsampling and filtering. Signal I2S_TX_PDM_HP_BYPASS of register I2S_PDM_CONF_REG can be set to

bypass the HPF at the PCM input. Filter module group0 carries out the upsampling. If the frequency of the PDM

signal is fpdm and the frequency of the PCM signal is fpcm, the relation between fpdm and fpcm is given by:

fpdm = 64×fpcm×
I2S_TX_PDM_FP

I2S_TX_PDM_FS

The upsampling factor of 64 is the result of the two upsampling stages.

Table 38 lists the configuration rates of the I2S_TX_PDM_FP bit and the I2S_TX_PDM_FS bit of register

I2S_PDM_FREQ_CONF_REG, whose output PDM signal frequency remains 48×128 KHz at different PCM signal

frequencies.

Table 38: Upsampling Rate Configuration

fpcm (KHz) I2S_TX_PDM_FP I2S_TX_PDM_FS fpdm (KHz)

48 960 480

48×128

44.1 960 441

32 960 320

24 960 240

16 960 160

8 960 80

Espressif Systems 169 ESP32 Technical Reference Manual V1.8

8. I2S

The I2S_TX_PDM_SINC_OSR2 bit of I2S_PDM_CONF_REG is the upsampling rate of the Filter group0.

I2S_TX_PDM_SINC_OSR2 =

⌊
I2S_TX_PDM_FP

I2S_TX_PDM_FS

⌋

As is shown in Figure 44, the I2S_TX_PDM_EN bit and the I2S_PCM2PDM_CONV_EN bit of register

I2S_PDM_CONF_REG should be set to 1 to use the PDM sending module. The

I2S_TX_PDM_SIGMADELTA_IN_SHIFT bit, I2S_TX_PDM_SINC_IN_SHIFT bit, I2S_TX_PDM_LP_IN_SHIFT bit

and I2S_TX_PDM_HP_IN_SHIFT bit of register I2S_PDM_CONF_REG are used to adjust the size of the input

signal of each filter module.

Figure 44: PDM Sends Signal

As is shown in Figure 45, the I2S_RX_PDM_EN bit and the I2S_PDM2PCM_CONV_EN bit of register

I2S_PDM_CONF_REG should be set to 1, in order to use the PDM receiving module. As is shown in Figure 46,

the PDM receiving module will convert the received PDM signal into a 16-bit PCM signal. Filter group1 is used to

downsample the PDM signal, and the I2S_RX_PDM_SINC_DSR_16_EN bit of register I2S_PDM_CONF_REG is

used to adjust the corresponding down-sampling rate.

Figure 45: PDM Receives Signal

Figure 46: PDM Receive Module

Table 39 shows the configuration of the I2S_RX_PDM_SINC_DSR_16_EN bit whose PCM signal frequency

remains 48 KHz at different PDM signal frequencies.

Espressif Systems 170 ESP32 Technical Reference Manual V1.8

8. I2S

Table 39: Down-sampling Configuration

PDM freq (KHz) I2S_RX_PDM_SINC_DSR_16_EN PCM freq (KHz)

fpcm×128 1
fpcm

fpcm×64 0

8.5 LCD Mode

There are three operational modes in the LCD mode of ESP32 I2S:

• LCD master transmitting mode

• Camera slave receiving mode

• ADC/DAC mode

The clock configuration of the LCD master transmitting mode is identical to I2S’s clock configuration. In the LCD

mode, the frequency of WS is half of fBCK.

8.5.1 LCD Master Transmitting Mode

As is shown in Figure 47, the WR signal of LCD connects to the WS signal of I2S. The LCD data bus width is 24

bits.

Figure 47: LCD Master Transmitting Mode

The I2S_LCD_EN bit of register I2S_CONF2_REG needs to be set and the I2S_TX_SLAVE_MOD bit of register

I2S_CONF_REG needs to be cleared, in order to configure I2S to the LCD master transmitting mode. Meanwhile,

data should be sent under the correct mode, according to the I2S_TX_CHAN_MOD[2:0] bit of register

I2S_CONF_CHAN_REG and the I2S_TX_FIFO_MOD[2:0] bit of register I2S_FIFO_CONF_REG. The WS signal

needs to be inverted when it is routed through the GPIO Matrix. For details, please refer to the chapter about

IO_MUX and the GPIO Matrix. The I2S_LCD_TX_SDX2_EN bit and the I2S_LCD_TX_WRX2_EN bit of register

I2S_CONF2_REG should be set to the LCD master transmitting mode, so that both the data bus and WR signal

work in the appropriate mode.

Figure 48: LCD Master Transmitting Data Frame, Form 1

Espressif Systems 171 ESP32 Technical Reference Manual V1.8

8. I2S

Figure 49: LCD Master Transmitting Data Frame, Form 2

As is shown in Figure 48 and Figure 49, the I2S_LCD_TX_WRX2_EN bit should be set to 1 and the

I2S_LCD_TX_SDX2_EN bit should be set to 0 in the data frame, form 1. Both I2S_LCD_TX_SDX2_EN bit and

I2S_LCD_TX_WRX2_EN bit are set to 1 in the data frame, form 2.

8.5.2 Camera Slave Receiving Mode

ESP32 I2S supports a camera slave mode for high-speed data transfer from external camera modules. As

shown in Figure 50, in this mode, I2S is set to slave receiving mode. Besides the 16-channel data signal bus

I2SnI_Data_in, there are other signals, such as I2Sn_H_SYNC, I2Sn_V_SYNC and I2Sn_H_ENABLE.

The PCLK in the Camera module connects to I2SnI_WS_in in the I2S module, as Figure 50 shows.

Figure 50: Camera Slave Receiving Mode

When I2S is in the camera slave receiving mode, and when I2Sn_H_SYNC, I2S_V_SYNC and I2S_H_REF are

held high, the master starts transmitting data, that is,

transmission_start = (I2Sn_H_SY NC == 1)&&(I2Sn_V _SY NC == 1)&&(I2Sn_H_ENABLE == 1)

Thus, during data transmission, these three signals should be kept at a high level. For example, if the

I2Sn_V_SYNC signal of a camera is at low level during data transmission, it will be inverted when routed to the

I2S module. ESP32 supports signal inversion through the GPIO matrix. For details, please refer to the chapter

about IO_MUX and the GPIO Matrix.

In order to make I2S work in camera mode, the I2S_LCD_EN bit and the I2S_CAMERA_EN bit of register

I2S_CONF2_REG are set to 1, the I2S_RX_SLAVE_MOD bit of register I2S_CONF_REG is set to 1, the

I2S_RX_MSB_RIGHT bit and the I2S_RX_RIGHT_FIRST bit of I2S_CONF_REG are set to 0. Thus, I2S works in

the LCD slave receiving mode. At the same time, in order to use the correct mode to receive data, both the

I2S_RX_CHAN_MOD[2:0] bit of register I2S_CONF_CHAN_REG and the I2S_RX_FIFO_MOD[2:0] bit of register

I2S_FIFO_CONF_REG are set to 1.

Espressif Systems 172 ESP32 Technical Reference Manual V1.8

8. I2S

8.5.3 ADC/DAC mode

In LCD mode, ESP32’s ADC and DAC can receive data. When the I2S0 module connects to the on-chip ADC,

the I2S0 module should be set to master receiving mode. Figure 51 shows the signal connection between the

I2S0 module and the ADC.

Figure 51: ADC Interface of I2S0

Firstly, the I2S_LCD_EN bit of register I2S_CONF2_REG is set to 1, and the I2S_RX_SLAVE_MOD bit of register

I2S_CONF_REG is set to 0, so that the I2S0 module works in LCD master receiving mode, and the I2S0 module

clock is configured such that the WS signal of I2S0 outputs an appropriate frequency. Then, the

APB_CTRL_SARADC_DATA_TO_I2S bit of register APB_CTRL_APB_SARADC_CTRL_REG is set to 1. Enable

I2S to receive data after configuring the relevant registers of SARADC. For details, please refer to the chapter

about on-chip sensors.

Figure 52: DAC Interface of I2S

Figure 53: Data Input by I2S DAC Interface

The I2S0 module should be configured to master transmitting mode when it connects to the on-chip DAC. Figure

52 shows the signal connection between the I2S0 module and the DAC. The DAC’s control module regards

I2S_CLK as the clock in this configuration. As shown in Figure 53, when the data bus inputs data to the DAC’s

control module, the latter will input right-channel data to DAC1 module and left-channel data to DAC2 module.

When using the I2S DMA module, 8 bits of data-to-be-transmitted are shifted to the left by 8 bits of

data-to-be-received into the DMA double-byte type of buffer.

The I2S_LCD_EN bit of register I2S_CONF2_REG should be set to 1, while I2S_RX_SHORT_SYNC,

Espressif Systems 173 ESP32 Technical Reference Manual V1.8

8. I2S

I2S_TX_SHORT_SYNC, I2S_CONF_REG , I2S_RX_MSB_SHIFT and I2S_TX_MSB_SHIFT should all be reset to

0. The I2S_TX_SLAVE_MOD bit of register I2S_CONF_REG should be set to 0, as well, when using the DAC

mode of I2S0. Select a suitable transmit mode according to the standards of transmitting a 16-bit digital data

stream. Configure the I2S0 module clock to output a suitable frequency for the I2S_CLK and the WS of I2S.

Enable I2S0 to send data after configuring the relevant DAC registers.

8.6 I2S Interrupts

8.6.1 FIFO Interrupts

• I2S_TX_HUNG_INT: Triggered when transmitting data is timed out.

• I2S_RX_HUNG_INT: Triggered when receiving data is timed out.

• I2S_TX_REMPTY_INT: Triggered when the transmit FIFO is empty.

• I2S_TX_WFULL_INT: Triggered when the transmit FIFO is full.

• I2S_RX_REMPTY_INT: Triggered when the receive FIFO is empty.

• I2S_RX_WFULL_INT: Triggered when the receive FIFO is full.

• I2S_TX_PUT_DATA_INT: Triggered when the transmit FIFO is almost empty.

• I2S_RX_TAKE_DATA_INT: Triggered when the receive FIFO is almost full.

8.6.2 DMA Interrupts

• I2S_OUT_TOTAL_EOF_INT: Triggered when all transmitting linked lists are used up.

• I2S_IN_DSCR_EMPTY_INT: Triggered when there are no valid receiving linked lists left.

• I2S_OUT_DSCR_ERR_INT: Triggered when invalid rxlink descriptors are encountered.

• I2S_IN_DSCR_ERR_INT: Triggered when invalid txlink descriptors are encountered.

• I2S_OUT_EOF_INT: Triggered when rxlink has finished sending a packet.

• I2S_OUT_DONE_INT: Triggered when all transmitted and buffered data have been read.

• I2S_IN_SUC_EOF_INT: Triggered when all data have been received.

• I2S_IN_DONE_INT: Triggered when the current txlink descriptor is handled.

8.7 Register Summary

Name Description I2S0 I2S1 Acc

Configuration registers

I2S_CONF_REG Configuration and start/stop bits 0x3FF4F008 0x3FF6D008 R/W

I2S_CONF1_REG PCM configuration register 0x3FF4F0A0 0x3FF6D0A0 R/W

I2S_CONF2_REG
ADC/LCD/camera configuration

register
0x3FF4F0A8 0x3FF6D0A8 R/W

I2S_TIMING_REG
Signal delay and timing parame-

ters
0x3FF4F01C 0x3FF6D01C R/W

Espressif Systems 174 ESP32 Technical Reference Manual V1.8

8. I2S

I2S_FIFO_CONF_REG FIFO configuration 0x3FF4F020 0x3FF6D020 R/W

I2S_CONF_SINGLE_DATA_REG Static channel output value 0x3FF4F028 0x3FF6D028 R/W

I2S_CONF_CHAN_REG Channel configuration 0x3FF4F02C 0x3FF6D02C R/W

I2S_LC_HUNG_CONF_REG Timeout detection configuration 0x3FF4F074 0x3FF6D074 R/W

I2S_CLKM_CONF_REG Bitclock configuration 0x3FF4F0AC 0x3FF6D0AC R/W

I2S_SAMPLE_RATE_CONF_REG Sample rate configuration 0x3FF4F0B0 0x3FF6D0B0 R/W

I2S_PD_CONF_REG Power-down register 0x3FF4F0A4 0x3FF6D0A4 R/W

I2S_STATE_REG I2S status register 0x3FF4F0BC 0x3FF6D0BC RO

DMA registers

I2S_LC_CONF_REG DMA configuration register 0x3FF4F060 0x3FF6D060 R/W

I2S_RXEOF_NUM_REG Receive data count 0x3FF4F024 0x3FF6D024 R/W

I2S_OUT_LINK_REG
DMA transmit linked list configu-

ration and address
0x3FF4F030 0x3FF6D030 R/W

I2S_IN_LINK_REG
DMA receive linked list configura-

tion and address
0x3FF4F034 0x3FF6D034 R/W

I2S_OUT_EOF_DES_ADDR_REG
The address of transmit link de-

scriptor producing EOF
0x3FF4F038 0x3FF6D038 RO

I2S_IN_EOF_DES_ADDR_REG
The address of receive link de-

scriptor producing EOF
0x3FF4F03C 0x3FF6D03C RO

I2S_OUT_EOF_BFR_DES_ADDR_REG
The address of transmit buffer

producing EOF
0x3FF4F040 0x3FF6D040 RO

I2S_INLINK_DSCR_REG
The address of current inlink de-

scriptor
0x3FF4F048 0x3FF6D048 RO

I2S_INLINK_DSCR_BF0_REG
The address of next inlink de-

scriptor
0x3FF4F04C 0x3FF6D04C RO

I2S_INLINK_DSCR_BF1_REG
The address of next inlink data

buffer
0x3FF4F050 0x3FF6D050 RO

I2S_OUTLINK_DSCR_REG
The address of current outlink de-

scriptor
0x3FF4F054 0x3FF6D054 RO

I2S_OUTLINK_DSCR_BF0_REG
The address of next outlink de-

scriptor
0x3FF4F058 0x3FF6D058 RO

I2S_OUTLINK_DSCR_BF1_REG
The address of next outlink data

buffer
0x3FF4F05C 0x3FF6D05C RO

I2S_LC_STATE0_REG DMA receive status 0x3FF4F06C 0x3FF6D06C RO

I2S_LC_STATE1_REG DMA transmit status 0x3FF4F070 0x3FF6D070 RO

Pulse density (DE) modulation registers

I2S_PDM_CONF_REG PDM configuration 0x3FF4F0B4 0x3FF6D0B4 R/W

I2S_PDM_FREQ_CONF_REG PDM frequencies 0x3FF4F0B8 0x3FF6D0B8 R/W

Interrupt registers

I2S_INT_RAW_REG Raw interrupt status 0x3FF4F00C 0x3FF6D00C RO

I2S_INT_ST_REG Masked interrupt status 0x3FF4F010 0x3FF6D010 RO

I2S_INT_ENA_REG Interrupt enable bits 0x3FF4F014 0x3FF6D014 R/W

I2S_INT_CLR_REG Interrupt clear bits 0x3FF4F018 0x3FF6D018 WO

Espressif Systems 175 ESP32 Technical Reference Manual V1.8

8. I2S

8.8 Registers

Register 8.1: I2S_CONF_REG (0x0008)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

I2S
_S

IG
_L

OOPBACK

0

18

I2S
_R

X_
M

SB_R
IG

HT

0

17

I2S
_T

X_
M

SB_R
IG

HT

0

16

I2S
_R

X_
M

ONO

1

15

I2S
_T

X_
M

ONO

1

14

I2S
_R

X_
SHORT_

SYNC

1

13

I2S
_T

X_
SHORT_

SYNC

1

12

I2S
_R

X_
M

SB_S
HIFT

0

11

I2S
_T

X_
M

SB_S
HIFT

0

10

I2S
_R

X_
RIG

HT_
FIR

ST

0

9

I2S
_T

X_
RIG

HT_
FIR

ST

0

8

I2S
_R

X_
SLA

VE_M
OD

0

7

I2S
_T

X_
SLA

VE_M
OD

0

6

I2S
_R

X_
STA

RT

0

5

I2S
_T

X_
STA

RT

0

4

I2S
_R

X_
FIF

O_R
ESET

0

3

I2S
_T

X_
FIF

O_R
ESET

0

2

I2S
_R

X_
RESET

0

1

I2S
_T

X_
RESET

0

0

Reset

I2S_SIG_LOOPBACK Enable signal loopback mode, with transmitter module and receiver module

sharing the same WS and BCK signals. (R/W)

I2S_RX_MSB_RIGHT Set this to place right-channel data at the MSB in the receive FIFO. (R/W)

I2S_TX_MSB_RIGHT Set this bit to place right-channel data at the MSB in the transmit FIFO. (R/W)

I2S_RX_MONO Set this bit to enable receiver’s mono mode in PCM standard mode. (R/W)

I2S_TX_MONO Set this bit to enable transmitter’s mono mode in PCM standard mode. (R/W)

I2S_RX_SHORT_SYNC Set this bit to enable receiver in PCM standard mode. (R/W)

I2S_TX_SHORT_SYNC Set this bit to enable transmitter in PCM standard mode. (R/W)

I2S_RX_MSB_SHIFT Set this bit to enable receiver in Philips standard mode. (R/W)

I2S_TX_MSB_SHIFT Set this bit to enable transmitter in Philips standard mode. (R/W)

I2S_RX_RIGHT_FIRST Set this bit to receive right-channel data first. (R/W)

I2S_TX_RIGHT_FIRST Set this bit to transmit right-channel data first. (R/W)

I2S_RX_SLAVE_MOD Set this bit to enable slave receiver mode. (R/W)

I2S_TX_SLAVE_MOD Set this bit to enable slave transmitter mode. (R/W)

I2S_RX_START Set this bit to start receiving data. (R/W)

I2S_TX_START Set this bit to start transmitting data. (R/W)

I2S_RX_FIFO_RESET Set this bit to reset the receive FIFO. (R/W)

I2S_TX_FIFO_RESET Set this bit to reset the transmit FIFO. (R/W)

I2S_RX_RESET Set this bit to reset the receiver. (R/W)

I2S_TX_RESET Set this bit to reset the transmitter. (R/W)

Espressif Systems 176 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.2: I2S_INT_RAW_REG (0x000c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

I2S
_O

UT_
TO

TA
L_

EOF_
IN

T_
RAW

0

16

I2S
_IN

_D
SCR_E

M
PTY

_IN
T_

RAW

0

15

I2S
_O

UT_
DSCR_E

RR_IN
T_

RAW

0

14

I2S
_IN

_D
SCR_E

RR_IN
T_

RAW

0

13

I2S
_O

UT_
EOF_

IN
T_

RAW

0

12

I2S
_O

UT_
DONE_IN

T_
RAW

0

11

(re
se

rve
d)

0

10

I2S
_IN

_S
UC_E

OF_
IN

T_
RAW

0

9

I2S
_IN

_D
ONE_IN

T_
RAW

0

8

I2S
_T

X_
HUNG_IN

T_
RAW

0

7

I2S
_R

X_
HUNG_IN

T_
RAW

0

6

I2S
_T

X_
REM

PTY
_IN

T_
RAW

0

5

I2S
_T

X_
W

FU
LL

_IN
T_

RAW

0

4

I2S
_R

X_
REM

PTY
_IN

T_
RAW

0

3

I2S
_R

X_
W

FU
LL

_IN
T_

RAW

0

2

I2S
_T

X_
PUT_

DAT
A_IN

T_
RAW

0

1

I2S
_R

X_
TA

KE_D
AT

A_IN
T_

RAW

0

0

Reset

I2S_OUT_TOTAL_EOF_INT_RAW The raw interrupt status bit for the I2S_OUT_TOTAL_EOF_INT in-

terrupt. (RO)

I2S_IN_DSCR_EMPTY_INT_RAW The raw interrupt status bit for the I2S_IN_DSCR_EMPTY_INT in-

terrupt. (RO)

I2S_OUT_DSCR_ERR_INT_RAW The raw interrupt status bit for the I2S_OUT_DSCR_ERR_INT in-

terrupt. (RO)

I2S_IN_DSCR_ERR_INT_RAW The raw interrupt status bit for the I2S_IN_DSCR_ERR_INT interrupt.

(RO)

I2S_OUT_EOF_INT_RAW The raw interrupt status bit for the I2S_OUT_EOF_INT interrupt. (RO)

I2S_OUT_DONE_INT_RAW The raw interrupt status bit for the I2S_OUT_DONE_INT interrupt. (RO)

I2S_IN_SUC_EOF_INT_RAW The raw interrupt status bit for the I2S_IN_SUC_EOF_INT interrupt.

(RO)

I2S_IN_DONE_INT_RAW The raw interrupt status bit for the I2S_IN_DONE_INT interrupt. (RO)

I2S_TX_HUNG_INT_RAW The raw interrupt status bit for the I2S_TX_HUNG_INT interrupt. (RO)

I2S_RX_HUNG_INT_RAW The raw interrupt status bit for the I2S_RX_HUNG_INT interrupt. (RO)

I2S_TX_REMPTY_INT_RAW The raw interrupt status bit for the I2S_TX_REMPTY_INT interrupt. (RO)

I2S_TX_WFULL_INT_RAW The raw interrupt status bit for the I2S_TX_WFULL_INT interrupt. (RO)

I2S_RX_REMPTY_INT_RAW The raw interrupt status bit for the I2S_RX_REMPTY_INT interrupt.

(RO)

I2S_RX_WFULL_INT_RAW The raw interrupt status bit for the I2S_RX_WFULL_INT interrupt. (RO)

I2S_TX_PUT_DATA_INT_RAW The raw interrupt status bit for the I2S_TX_PUT_DATA_INT interrupt.

(RO)

I2S_RX_TAKE_DATA_INT_RAW The raw interrupt status bit for the I2S_RX_TAKE_DATA_INT inter-

rupt. (RO)

Espressif Systems 177 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.3: I2S_INT_ST_REG (0x0010)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

I2S
_O

UT_
TO

TA
L_

EOF_
IN

T_
ST

0

16

I2S
_IN

_D
SCR_E

M
PTY

_IN
T_

ST

0

15

I2S
_O

UT_
DSCR_E

RR_IN
T_

ST

0

14

I2S
_IN

_D
SCR_E

RR_IN
T_

ST

0

13

I2S
_O

UT_
EOF_

IN
T_

ST

0

12

I2S
_O

UT_
DONE_IN

T_
ST

0

11

(re
se

rve
d)

0

10

I2S
_IN

_S
UC_E

OF_
IN

T_
ST

0

9

I2S
_T

X_
DONE_IN

T_
ST

0

8

I2S
_T

X_
HUNG_IN

T_
ST

0

7

I2S
_R

X_
HUNG_IN

T_
ST

0

6

I2S
_T

X_
REM

PTY
_IN

T_
ST

0

5

I2S
_T

X_
W

FU
LL

_IN
T_

ST

0

4

I2S
_R

X_
REM

PTY
_IN

T_
ST

0

3

I2S
_R

X_
W

FU
LL

_IN
T_

ST

0

2

I2S
_T

X_
PUT_

DAT
A_IN

T_
ST

0

1

I2S
_R

X_
TA

KE_D
AT

A_IN
T_

ST

0

0

Reset

I2S_OUT_TOTAL_EOF_INT_ST The masked interrupt status bit for the I2S_OUT_TOTAL_EOF_INT

interrupt. (RO)

I2S_IN_DSCR_EMPTY_INT_ST The masked interrupt status bit for the I2S_IN_DSCR_EMPTY_INT

interrupt. (RO)

I2S_OUT_DSCR_ERR_INT_ST The masked interrupt status bit for the I2S_OUT_DSCR_ERR_INT

interrupt. (RO)

I2S_IN_DSCR_ERR_INT_ST The masked interrupt status bit for the I2S_IN_DSCR_ERR_INT inter-

rupt. (RO)

I2S_OUT_EOF_INT_ST The masked interrupt status bit for the I2S_OUT_EOF_INT interrupt. (RO)

I2S_OUT_DONE_INT_ST The masked interrupt status bit for the I2S_OUT_DONE_INT interrupt. (RO)

I2S_IN_SUC_EOF_INT_ST The masked interrupt status bit for the I2S_IN_SUC_EOF_INT interrupt.

(RO)

I2S_IN_DONE_INT_ST The masked interrupt status bit for the I2S_IN_DONE_INT interrupt. (RO)

I2S_TX_HUNG_INT_ST The masked interrupt status bit for the I2S_TX_HUNG_INT interrupt. (RO)

I2S_RX_HUNG_INT_ST The masked interrupt status bit for the I2S_RX_HUNG_INT interrupt. (RO)

I2S_TX_REMPTY_INT_ST The masked interrupt status bit for the I2S_TX_REMPTY_INT interrupt.

(RO)

I2S_TX_WFULL_INT_ST The masked interrupt status bit for the I2S_TX_WFULL_INT interrupt. (RO)

I2S_RX_REMPTY_INT_ST The masked interrupt status bit for the I2S_RX_REMPTY_INT interrupt.

(RO)

I2S_RX_WFULL_INT_ST The masked interrupt status bit for the I2S_RX_WFULL_INT interrupt. (RO)

I2S_TX_PUT_DATA_INT_ST The masked interrupt status bit for the I2S_TX_PUT_DATA_INT inter-

rupt. (RO)

I2S_RX_TAKE_DATA_INT_ST The masked interrupt status bit for the I2S_RX_TAKE_DATA_INT inter-

rupt. (RO)

Espressif Systems 178 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.4: I2S_INT_ENA_REG (0x0014)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

I2S
_O

UT_
TO

TA
L_

EOF_
IN

T_
ENA

0

16

I2S
_IN

_D
SCR_E

M
PTY

_IN
T_

ENA

0

15

I2S
_O

UT_
DSCR_E

RR_IN
T_

ENA

0

14

I2S
_IN

_D
SCR_E

RR_IN
T_

ENA

0

13

I2S
_O

UT_
EOF_

IN
T_

ENA

0

12

I2S
_O

UT_
DONE_IN

T_
ENA

0

11

(re
se

rve
d)

0

10

I2S
_IN

_S
UC_E

OF_
IN

T_
ENA

0

9

I2S
_IN

_D
ONE_IN

T_
ENA

0

8

I2S
_T

X_
HUNG_IN

T_
ENA

0

7

I2S
_R

X_
HUNG_IN

T_
ENA

0

6

I2S
_T

X_
REM

PTY
_IN

T_
ENA

0

5

I2S
_T

X_
W

FU
LL

_IN
T_

ENA

0

4

I2S
_R

X_
REM

PTY
_IN

T_
ENA

0

3

I2S
_R

X_
W

FU
LL

_IN
T_

ENA

0

2

I2S
_T

X_
PUT_

DAT
A_IN

T_
ENA

0

1

I2S
_R

X_
TA

KE_D
AT

A_IN
T_

ENA

0

0

Reset

I2S_OUT_TOTAL_EOF_INT_ENA The interrupt enable bit for the I2S_OUT_TOTAL_EOF_INT inter-

rupt. (R/W)

I2S_IN_DSCR_EMPTY_INT_ENA The interrupt enable bit for the I2S_IN_DSCR_EMPTY_INT inter-

rupt. (R/W)

I2S_OUT_DSCR_ERR_INT_ENA The interrupt enable bit for the I2S_OUT_DSCR_ERR_INT interrupt.

(R/W)

I2S_IN_DSCR_ERR_INT_ENA The interrupt enable bit for the I2S_IN_DSCR_ERR_INT interrupt.

(R/W)

I2S_OUT_EOF_INT_ENA The interrupt enable bit for the I2S_OUT_EOF_INT interrupt. (R/W)

I2S_OUT_DONE_INT_ENA The interrupt enable bit for the I2S_OUT_DONE_INT interrupt. (R/W)

I2S_IN_SUC_EOF_INT_ENA The interrupt enable bit for the I2S_IN_SUC_EOF_INT interrupt. (R/W)

I2S_IN_DONE_INT_ENA The interrupt enable bit for the I2S_IN_DONE_INT interrupt. (R/W)

I2S_TX_HUNG_INT_ENA The interrupt enable bit for the I2S_TX_HUNG_INT interrupt. (R/W)

I2S_RX_HUNG_INT_ENA The interrupt enable bit for the I2S_RX_HUNG_INT interrupt. (R/W)

I2S_TX_REMPTY_INT_ENA The interrupt enable bit for the I2S_TX_REMPTY_INT interrupt. (R/W)

I2S_TX_WFULL_INT_ENA The interrupt enable bit for the I2S_TX_WFULL_INT interrupt. (R/W)

I2S_RX_REMPTY_INT_ENA The interrupt enable bit for the I2S_RX_REMPTY_INT interrupt. (R/W)

I2S_RX_WFULL_INT_ENA The interrupt enable bit for the I2S_RX_WFULL_INT interrupt. (R/W)

I2S_TX_PUT_DATA_INT_ENA The interrupt enable bit for the I2S_TX_PUT_DATA_INT interrupt.

(R/W)

I2S_RX_TAKE_DATA_INT_ENA The interrupt enable bit for the I2S_RX_TAKE_DATA_INT interrupt.

(R/W)

Espressif Systems 179 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.5: I2S_INT_CLR_REG (0x0018)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

I2S
_O

UT_
TO

TA
L_

EOF_
IN

T_
CLR

0

16

I2S
_IN

_D
SCR_E

M
PTY

_IN
T_

CLR

0

15

I2S
_O

UT_
DSCR_E

RR_IN
T_

CLR

0

14

I2S
_IN

_D
SCR_E

RR_IN
T_

CLR

0

13

I2S
_O

UT_
EOF_

IN
T_

CLR

0

12

I2S
_O

UT_
DONE_IN

T_
CLR

0

11

(re
se

rve
d)

0

10

I2S
_IN

_S
UC_E

OF_
IN

T_
CLR

0

9

I2S
_IN

_D
ONE_IN

T_
CLR

0

8

I2S
_T

X_
HUNG_IN

T_
CLR

0

7

I2S
_R

X_
HUNG_IN

T_
CLR

0

6

I2S
_T

X_
REM

PTY
_IN

T_
CLR

0

5

I2S
_T

X_
W

FU
LL

_IN
T_

CLR

0

4

I2S
_R

X_
REM

PTY
_IN

T_
CLR

0

3

I2S
_R

X_
W

FU
LL

_IN
T_

CLR

0

2

I2S
_T

X_
PUT_

DAT
A_IN

T_
CLR

0

1

I2S
_R

X_
TA

KE_D
AT

A_IN
T_

CLR

0

0

Reset

I2S_OUT_TOTAL_EOF_INT_CLR Set this bit to clear the I2S_OUT_TOTAL_EOF_INT interrupt. (WO)

I2S_IN_DSCR_EMPTY_INT_CLR Set this bit to clear the I2S_IN_DSCR_EMPTY_INT interrupt. (WO)

I2S_OUT_DSCR_ERR_INT_CLR Set this bit to clear the I2S_OUT_DSCR_ERR_INT interrupt. (WO)

I2S_IN_DSCR_ERR_INT_CLR Set this bit to clear the I2S_IN_DSCR_ERR_INT interrupt. (WO)

I2S_OUT_EOF_INT_CLR Set this bit to clear the I2S_OUT_EOF_INT interrupt. (WO)

I2S_OUT_DONE_INT_CLR Set this bit to clear the I2S_OUT_DONE_INT interrupt. (WO)

I2S_IN_SUC_EOF_INT_CLR Set this bit to clear the I2S_IN_SUC_EOF_INT interrupt. (WO)

I2S_IN_DONE_INT_CLR Set this bit to clear the I2S_IN_DONE_INT interrupt. (WO)

I2S_TX_HUNG_INT_CLR Set this bit to clear the I2S_TX_HUNG_INT interrupt. (WO)

I2S_RX_HUNG_INT_CLR Set this bit to clear the I2S_RX_HUNG_INT interrupt. (WO)

I2S_TX_REMPTY_INT_CLR Set this bit to clear the I2S_TX_REMPTY_INT interrupt. (WO)

I2S_TX_WFULL_INT_CLR Set this bit to clear the I2S_TX_WFULL_INT interrupt. (WO)

I2S_RX_REMPTY_INT_CLR Set this bit to clear the I2S_RX_REMPTY_INT interrupt. (WO)

I2S_RX_WFULL_INT_CLR Set this bit to clear the I2S_RX_WFULL_INT interrupt. (WO)

I2S_TX_PUT_DATA_INT_CLR Set this bit to clear the I2S_TX_PUT_DATA_INT interrupt. (WO)

I2S_RX_TAKE_DATA_INT_CLR Set this bit to clear the I2S_RX_TAKE_DATA_INT interrupt. (WO)

Espressif Systems 180 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.6: I2S_TIMING_REG (0x001c)

(re
se

rve
d)

0 0 0 0 0 0 0

31 25

I2S
_T

X_
BCK_IN

_IN
V

0

24

I2S
_D

AT
A_E

NABLE
_D

ELA
Y

0 0

23 22

I2S
_R

X_
DSYNC_S

W

0

21

I2S
_T

X_
DSYNC_S

W

0

20

I2S
_R

X_
BCK_O

UT_
DELA

Y

0 0

19 18

I2S
_R

X_
W

S_O
UT_

DELA
Y

0 0

17 16

I2S
_T

X_
SD_O

UT_
DELA

Y

0 0

15 14

I2S
_T

X_
W

S_O
UT_

DELA
Y

0 0

13 12

I2S
_T

X_
BCK_O

UT_
DELA

Y

0 0

11 10

I2S
_R

X_
SD_IN

_D
ELA

Y

0 0

9 8

I2S
_R

X_
W

S_IN
_D

ELA
Y

0 0

7 6

I2S
_R

X_
BCK_IN

_D
ELA

Y

0 0

5 4

I2S
_T

X_
W

S_IN
_D

ELA
Y

0 0

3 2

I2S
_T

X_
BCK_IN

_D
ELA

Y

0 0

1 0

Reset

I2S_TX_BCK_IN_INV Set this bit to invert the BCK signal into the slave transmitter. (R/W)

I2S_DATA_ENABLE_DELAY Number of delay cycles for data valid flag. (R/W)

I2S_RX_DSYNC_SW Set this bit to synchronize signals into the receiver in double sync method.

(R/W)

I2S_TX_DSYNC_SW Set this bit to synchronize signals into the transmitter in double sync method.

(R/W)

I2S_RX_BCK_OUT_DELAY Number of delay cycles for BCK signal out of the receiver. (R/W)

I2S_RX_WS_OUT_DELAY Number of delay cycles for WS signal out of the receiver. (R/W)

I2S_TX_SD_OUT_DELAY Number of delay cycles for SD signal out of the transmitter. (R/W)

I2S_TX_WS_OUT_DELAY Number of delay cycles for WS signal out of the transmitter. (R/W)

I2S_TX_BCK_OUT_DELAY Number of delay cycles for BCK signal out of the transmitter. (R/W)

I2S_RX_SD_IN_DELAY Number of delay cycles for SD signal into the receiver. (R/W)

I2S_RX_WS_IN_DELAY Number of delay cycles for WS signal into the receiver. (R/W)

I2S_RX_BCK_IN_DELAY Number of delay cycles for BCK signal into the receiver. (R/W)

I2S_TX_WS_IN_DELAY Number of delay cycles for WS signal into the transmitter. (R/W)

I2S_TX_BCK_IN_DELAY Number of delay cycles for BCK signal into the transmitter. (R/W)

Espressif Systems 181 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.7: I2S_FIFO_CONF_REG (0x0020)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

I2S
_R

X_
FIF

O_M
OD_F

ORCE_E
N

0

20

I2S
_T

X_
FIF

O_M
OD_F

ORCE_E
N

0

19

I2S
_R

X_
FIF

O_M
OD

0 0 0

18 16

I2S
_T

X_
FIF

O_M
OD

0 0 0

15 13

I2S
_D

SCR_E
N

1

12

I2S
_T

X_
DAT

A_N
UM

32

11 6

I2S
_R

X_
DAT

A_N
UM

32

5 0

Reset

I2S_RX_FIFO_MOD_FORCE_EN The bit should always be set to 1. (R/W)

I2S_TX_FIFO_MOD_FORCE_EN The bit should always be set to 1. (R/W)

I2S_RX_FIFO_MOD Receive FIFO mode configuration bit. (R/W)

I2S_TX_FIFO_MOD Transmit FIFO mode configuration bit. (R/W)

I2S_DSCR_EN Set this bit to enable I2S DMA mode. (R/W)

I2S_TX_DATA_NUM Threshold of data length in the transmit FIFO. (R/W)

I2S_RX_DATA_NUM Threshold of data length in the receive FIFO. (R/W)

Register 8.8: I2S_RXEOF_NUM_REG (0x0024)

64

31 0

Reset

I2S_RXEOF_NUM_REG The length of the data to be received. It will trigger I2S_IN_SUC_EOF_INT.

(R/W)

Register 8.9: I2S_CONF_SINGLE_DATA_REG (0x0028)

0

31 0

Reset

I2S_CONF_SINGLE_DATA_REG The right channel or the left channel outputs constant values stored

in this register according to TX_CHAN_MOD and I2S_TX_MSB_RIGHT. (R/W)

Espressif Systems 182 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.10: I2S_CONF_CHAN_REG (0x002c)

(re
se

rve
d)

0 0

31 5

I2S
_R

X_
CHAN_M

OD

0 0

4 3

I2S
_T

X_
CHAN_M

OD

0 0 0

2 0

Reset

I2S_RX_CHAN_MOD I2S receiver channel mode configuration bits. Please refer to Section 8.4.5 for

further details. (R/W)

I2S_TX_CHAN_MOD I2S transmitter channel mode configuration bits. Please refer to Section 8.4.4

for further details. (R/W)

Register 8.11: I2S_OUT_LINK_REG (0x0030)

(re
se

rve
d)

0

31

I2S
_O

UTL
IN

K_R
ESTA

RT

0

30

I2S
_O

UTL
IN

K_S
TA

RT

0

29

I2S
_O

UTL
IN

K_S
TO

P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

I2S
_O

UTL
IN

K_A
DDR

0x000000

19 0

Reset

I2S_OUTLINK_RESTART Set this bit to restart outlink descriptor. (R/W)

I2S_OUTLINK_START Set this bit to start outlink descriptor. (R/W)

I2S_OUTLINK_STOP Set this bit to stop outlink descriptor. (R/W)

I2S_OUTLINK_ADDR The address of first outlink descriptor. (R/W)

Register 8.12: I2S_IN_LINK_REG (0x0034)

(re
se

rve
d)

0

31

I2S
_IN

LIN
K_R

ESTA
RT

0

30

I2S
_IN

LIN
K_S

TA
RT

0

29

I2S
_IN

LIN
K_S

TO
P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

I2S
_IN

LIN
K_A

DDR

0x000000

19 0

Reset

I2S_INLINK_RESTART Set this bit to restart inlink descriptor. (R/W)

I2S_INLINK_START Set this bit to start inlink descriptor. (R/W)

I2S_INLINK_STOP Set this bit to stop inlink descriptor. (R/W)

I2S_INLINK_ADDR The address of first inlink descriptor. (R/W)

Espressif Systems 183 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.13: I2S_OUT_EOF_DES_ADDR_REG (0x0038)

0x000000000

31 0

Reset

I2S_OUT_EOF_DES_ADDR_REG The address of outlink descriptor that produces EOF. (RO)

Register 8.14: I2S_IN_EOF_DES_ADDR_REG (0x003c)

0x000000000

31 0

Reset

I2S_IN_EOF_DES_ADDR_REG The address of inlink descriptor that produces EOF. (RO)

Register 8.15: I2S_OUT_EOF_BFR_DES_ADDR_REG (0x0040)

0x000000000

31 0

Reset

I2S_OUT_EOF_BFR_DES_ADDR_REG The address of the buffer corresponding to the outlink de-

scriptor that produces EOF. (RO)

Register 8.16: I2S_INLINK_DSCR_REG (0x0048)

0 0

31 0

Reset

I2S_INLINK_DSCR_REG The address of current inlink descriptor. (RO)

Register 8.17: I2S_INLINK_DSCR_BF0_REG (0x004c)

0 0

31 0

Reset

I2S_INLINK_DSCR_BF0_REG The address of next inlink descriptor. (RO)

Register 8.18: I2S_INLINK_DSCR_BF1_REG (0x0050)

0 0

31 0

Reset

I2S_INLINK_DSCR_BF1_REG The address of next inlink data buffer. (RO)

Espressif Systems 184 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.19: I2S_OUTLINK_DSCR_REG (0x0054)

0 0

31 0

Reset

I2S_OUTLINK_DSCR_REG The address of current outlink descriptor. (RO)

Register 8.20: I2S_OUTLINK_DSCR_BF0_REG (0x0058)

0 0

31 0

Reset

I2S_OUTLINK_DSCR_BF0_REG The address of next outlink descriptor. (RO)

Register 8.21: I2S_OUTLINK_DSCR_BF1_REG (0x005c)

0 0

31 0

Reset

I2S_OUTLINK_DSCR_BF1_REG The address of next outlink data buffer. (RO)

Espressif Systems 185 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.22: I2S_LC_CONF_REG (0x0060)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

I2S
_C

HECK_O
W

NER

0

12

I2S
_O

UT_
DAT

A_B
URST_

EN

0

11

I2S
_IN

DSCR_B
URST_

EN

0

10

I2S
_O

UTD
SCR_B

URST_
EN

0

9

I2S
_O

UT_
EOF_

M
ODE

1

8

(re
se

rve
d)

0

7

I2S
_O

UT_
AUTO

_W
RBACK

0

6

I2S
_O

UT_
LO

OP_T
EST

0

5

I2S
_IN

_L
OOP_T

EST

0

4

I2S
_A

HBM
_R

ST

0

3

I2S
_A

HBM
_F

IFO
_R

ST

0

2

I2S
_O

UT_
RST

0

1

I2S
_IN

_R
ST

0

0

Reset

I2S_CHECK_OWNER Set this bit to check the owner bit by hardware. (R/W)

I2S_OUT_DATA_BURST_EN Transmitter data transfer mode configuration bit. (R/W)

1: Transmit data in burst mode;

0: Transmit data in byte mode.

I2S_INDSCR_BURST_EN DMA inlink descriptor transfer mode configuration bit. (R/W)

1: Transfer inlink descriptor in burst mode;

0: Transfer inlink descriptor in byte mode.

I2S_OUTDSCR_BURST_EN DMA outlink descriptor transfer mode configuration bit. (R/W)

1: Transfer outlink descriptor in burst mode;

0: Transfer outlink descriptor in byte mode.

I2S_OUT_EOF_MODE DMA I2S_OUT_EOF_INT generation mode. (R/W)

1: When DMA has popped all data from the FIFO;

0: When AHB has pushed all data to the FIFO.

I2S_OUT_AUTO_WRBACK Set this bit to enable automatic outlink-writeback when all the data in tx

buffer has been transmitted. (R/W)

I2S_OUT_LOOP_TEST Set this bit to loop test outlink. (R/W)

I2S_IN_LOOP_TEST Set this bit to loop test inlink. (R/W)

I2S_AHBM_RST Set this bit to reset AHB interface of DMA. (R/W)

I2S_AHBM_FIFO_RST Set this bit to reset AHB interface cmdFIFO of DMA. (R/W)

I2S_OUT_RST Set this bit to reset out DMA FSM. (R/W)

I2S_IN_RST Set this bit to reset in DMA FSM. (R/W)

Register 8.23: I2S_LC_STATE0_REG (0x006c)

0x000000000

31 0

Reset

I2S_LC_STATE0_REG Receiver DMA channel status register. (RO)

Espressif Systems 186 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.24: I2S_LC_STATE1_REG (0x0070)

0x000000000

31 0

Reset

I2S_LC_STATE1_REG Transmitter DMA channel status register. (RO)

Register 8.25: I2S_LC_HUNG_CONF_REG (0x0074)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

I2S
_L

C_F
IFO

_T
IM

EOUT_
ENA

1

11

I2S
_L

C_F
IFO

_T
IM

EOUT_
SHIFT

0 0 0

10 8

I2S
_L

C_F
IFO

_T
IM

EOUT

0x010

7 0

Reset

I2S_LC_FIFO_TIMEOUT_ENA The enable bit for FIFO timeout. (R/W)

I2S_LC_FIFO_TIMEOUT_SHIFT The bits are used to set the tick counter threshold. The tick counter

is reset when the counter value >= 88000/2i2s_lc_fifo_timeout_shift. (R/W)

I2S_LC_FIFO_TIMEOUT When the value of FIFO hung counter is equal to this bit value, sending

data-timeout interrupt or receiving data-timeout interrupt will be triggered. (R/W)

Espressif Systems 187 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.26: I2S_CONF1_REG (0x00a0)

(re
se

rve
d)

0 0

31 9

I2S
_T

X_
STO

P_E
N

0

8

I2S
_R

X_
PCM

_B
YPA

SS

1

7

I2S
_R

X_
PCM

_C
ONF

0x0

6 4

I2S
_T

X_
PCM

_B
YPA

SS

1

3

I2S
_T

X_
PCM

_C
ONF

0x1

2 0

Reset

I2S_TX_STOP_EN Set this bit and the transmitter will stop transmitting BCK signal and WS signal

when tx FIFO is empty. (R/W)

I2S_RX_PCM_BYPASS Set this bit to bypass the Compress/Decompress module for the received

data. (R/W)

I2S_RX_PCM_CONF Compress/Decompress module configuration bit. (R/W)

0: Decompress received data;

1: Compress received data.

I2S_TX_PCM_BYPASS Set this bit to bypass the Compress/Decompress module for the transmitted

data. (R/W)

I2S_TX_PCM_CONF Compress/Decompress module configuration bit. (R/W)

0: Decompress transmitted data;

1: Compress transmitted data.

Register 8.27: I2S_PD_CONF_REG (0x00a4)

(re
se

rve
d)

0 0

31 4

(re
se

rve
d)

1

3

(re
se

rve
d)

0

2

I2S
_F

IFO
_F

ORCE_P
U

1

1

I2S
_F

IFO
_F

ORCE_P
D

0

0

Reset

I2S_FIFO_FORCE_PU Force FIFO power-up. (R/W)

I2S_FIFO_FORCE_PD Force FIFO power-down. (R/W)

Espressif Systems 188 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.28: I2S_CONF2_REG (0x00a8)

(re
se

rve
d)

0 0

31 8

I2S
_IN

TE
R_V

ALID
_E

N

0

7

I2S
_E

XT
_A

DC_S
TA

RT_
EN

0

6

I2S
_L

CD_E
N

1

5

(re
se

rve
d)

0 0

4 3

I2S
_L

CD_T
X_

SDX2
_E

N

0

2

I2S
_L

CD_T
X_

W
RX2

_E
N

0

1

I2S
_C

AM
ERA_E

N

0

0

Reset

I2S_INTER_VALID_EN Set this bit to enable camera’s internal validation. (R/W)

I2S_EXT_ADC_START_EN Set this bit to enable the start of external ADC . (R/W)

I2S_LCD_EN Set this bit to enable LCD mode. (R/W)

I2S_LCD_TX_SDX2_EN Set this bit to duplicate data pairs (Data Frame, Form 2) in LCD mode. (R/W)

I2S_LCD_TX_WRX2_EN One datum will be written twice in LCD mode. (R/W)

I2S_CAMERA_EN Set this bit to enable camera mode. (R/W)

Register 8.29: I2S_CLKM_CONF_REG (0x00ac)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 22

I2S
_C

LK
A_E

NA

0

21

(re
se

rve
d)

0

20

I2S
_C

LK
M

_D
IV_A

0x00

19 14

I2S
_C

LK
M

_D
IV_B

0x00

13 8

I2S
_C

LK
M

_D
IV_N

UM

4

7 0

Reset

I2S_CLKA_ENA Set this bit to enable clk_apll. (R/W)

I2S_CLKM_DIV_A Fractional clock divider’s denominator value. (R/W)

I2S_CLKM_DIV_B Fractional clock divider’s numerator value. (R/W)

I2S_CLKM_DIV_NUM I2S clock divider’s integral value. (R/W)

Espressif Systems 189 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.30: I2S_SAMPLE_RATE_CONF_REG (0x00b0)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

I2S
_R

X_
BITS

_M
OD

16

23 18

I2S
_T

X_
BITS

_M
OD

16

17 12

I2S
_R

X_
BCK_D

IV_N
UM

6

11 6

I2S
_T

X_
BCK_D

IV_N
UM

6

5 0

Reset

I2S_RX_BITS_MOD Set the bits to configure the bit length of I2S receiver channel. (R/W)

I2S_TX_BITS_MOD Set the bits to configure the bit length of I2S transmitter channel. (R/W)

I2S_RX_BCK_DIV_NUM Bit clock configuration bit in receiver mode. (R/W)

I2S_TX_BCK_DIV_NUM Bit clock configuration bit in transmitter mode. (R/W)

Espressif Systems 190 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.31: I2S_PDM_CONF_REG (0x00b4)

(re
se

rve
d)

0 0 0 0 0 0

31 26

I2S
_T

X_
PDM

_H
P_B

YPA
SS

0

25

I2S
_R

X_
PDM

_S
IN

C_D
SR_1

6_
EN

1

24

I2S
_T

X_
PDM

_S
IG

M
ADELT

A_IN
_S

HIFT

0x1

23 22

I2S
_T

X_
PDM

_S
IN

C_IN
_S

HIFT

0x1

21 20

I2S
_T

X_
PDM

_L
P_IN

_S
HIFT

0x1

19 18

I2S
_T

X_
PDM

_H
P_IN

_S
HIFT

0x1

17 16

(re
se

rve
d)

0 0 0 0 0 0 0 0

15 8

I2S
_T

X_
PDM

_S
IN

C_O
SR2

0x02

7 4

I2S
_P

DM
2P

CM
_C

ONV_E
N

1

3

I2S
_P

CM
2P

DM
_C

ONV_E
N

1

2

I2S
_R

X_
PDM

_E
N

0

1

I2S
_T

X_
PDM

_E
N

0

0

Reset

I2S_TX_PDM_HP_BYPASS Set this bit to bypass the transmitter’s PDM HP filter. (R/W)

I2S_RX_PDM_SINC_DSR_16_EN PDM downsampling rate for filter group 1 in receiver mode. (R/W)

1: downsampling rate = 128;

0: downsampling rate = 64.

I2S_TX_PDM_SIGMADELTA_IN_SHIFT Adjust the size of the input signal into filter module. (R/W)

0: divided by 2; 1: multiplied by 1; 2: multiplied by 2; 3: multiplied by 4.

I2S_TX_PDM_SINC_IN_SHIFT Adjust the size of the input signal into filter module. (R/W)

0: divided by 2; 1: multiplied by 1; 2: multiplied by 2; 3: multiplied by 4.

I2S_TX_PDM_LP_IN_SHIFT Adjust the size of the input signal into filter module. (R/W)

0: divided by 2; 1: multiplied by 1; 2: multiplied by 2; 3: multiplied by 4.

I2S_TX_PDM_HP_IN_SHIFT Adjust the size of the input signal into filter module. (R/W)

0: divided by 2; 1: multiplied by 1; 2: multiplied by 2; 3: multiplied by 4.

I2S_TX_PDM_SINC_OSR2 Upsampling rate = 64×i2s_tx_pdm_sinc_osr2 (R/W)

I2S_PDM2PCM_CONV_EN Set this bit to enable PDM-to-PCM converter. (R/W)

I2S_PCM2PDM_CONV_EN Set this bit to enable PCM-to-PDM converter. (R/W)

I2S_RX_PDM_EN Set this bit to enable receiver’s PDM mode. (R/W)

I2S_TX_PDM_EN Set this bit to enable transmitter’s PDM mode. (R/W)

Register 8.32: I2S_PDM_FREQ_CONF_REG (0x00b8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

I2S
_T

X_
PDM

_F
P

960

19 10

I2S
_T

X_
PDM

_F
S

441

9 0

Reset

I2S_TX_PDM_FP PCM-to-PDM converter’s PDM frequency parameter. (R/W)

I2S_TX_PDM_FS PCM-to-PDM converter’s PCM frequency parameter. (R/W)

Espressif Systems 191 ESP32 Technical Reference Manual V1.8

8. I2S

Register 8.33: I2S_STATE_REG (0x00bc)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 3

I2S
_R

X_
FIF

O_R
ESET_

BACK

0

2

I2S
_T

X_
FIF

O_R
ESET_

BACK

0

1

I2S
_T

X_
ID

LE

1

0

Reset

I2S_RX_FIFO_RESET_BACK This bit is used to confirm if the Rx FIFO reset is done. 1: reset is not

ready; 0: reset is ready. (RO)

I2S_TX_FIFO_RESET_BACK This bit is used to confirm if the Tx FIFO reset is done. 1: reset is not

ready; 0: reset is ready. (RO)

I2S_TX_IDLE The status bit of the transmitter. 1: the transmitter is idle; 0: the transmitter is busy.

(RO)

Espressif Systems 192 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

9. UART Controllers

9.1 Overview

Embedded applications often require a simple method of exchanging data between devices that need minimal

system resources. The Universal Asynchronous Receiver/Transmitter (UART) is one such standard that can

realize a flexible full-duplex data exchange among different devices. The three UART controllers available on a

chip are compatible with UART-enabled devices from various manufacturers. The UART can also carry out an

IrDA (Infrared Data Exchange), or function as an RS-485 modem.

All UART controllers integrated in the ESP32 feature an identical set of registers for ease of programming and

flexibility. In this documentation, these controllers are referred to as UARTn, where n = 0, 1, and 2, referring to

UART0, UART1, and UART2, respectively.

9.2 UART Features

The UART modules have the following main features:

• Programmable baud rate

• 1024 x 8-bit RAM shared by three UART transmit-FIFOs and receive-FIFOs

• Supports input baud rate self-check

• Supports 5/6/7/8 bits of data length

• Supports 1/1.5/2/3/4 STOP bits

• Supports parity bit

• Supports RS485 Protocol

• Supports IrDA Protocol

• Supports DMA to communicate data in high speed

• Supports UART wake-up

• Supports both software and hardware flow control

9.3 Functional Description

9.3.1 Introduction

UART is a character-oriented data link that can be used to achieve communication between two devices. The

asynchronous mode of transmission means that it is not necessary to add clocking information to the data being

sent. This, in turn, requires that the data rate, STOP bits, parity, etc., be identical at the transmitting and receiving

end for the devices to communicate successfully.

A typical UART frame begins with a START bit, followed by a “character” and an optional parity bit for error

detection, and it ends with a STOP condition. The UART controllers available on the ESP32 provide hardware

support for multiple lengths of data and STOP bits. In addition, the controllers support both software and

hardware flow control, as well as DMA, for seamless high-speed data transfer. This allows the developer to

employ multiple UART ports in the system with minimal software overhead.

Espressif Systems 193 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

9.3.2 UART Architecture

Figure 54: UART Basic Structure

Figure 54 shows the basic block diagram of the UART controller. The UART block can derive its clock from two

sources: the 80-MHz APB_CLK, or the reference clock REF_TICK (please refer to Chapter Reset and Clock for

more details). These two clock sources can be selected by configuring UART_TICK_REF_ALWAYS_ON.

Then, a divider in the clock path divides the selected clock source to generate clock signals that drive the UART

module. UART_CLKDIV_REG contains the clock divider value in two parts — UART_CLKDIV (integral part) and

UART_CLKDIV_FRAG (decimal part).

The UART controller can be further broken down into two functional blocks — the transmit block and the receive

block.

The transmit block contains a transmit-FIFO buffer, which buffers data awaiting to be transmitted. Software can

write Tx_FIFO via APB, and transmit data into Tx_FIFO via DMA. Tx_FIFO_Ctrl is used to control read- and

write-access to the Tx_FIFO. When Tx_FIFO is not null, Tx_FSM reads data via Tx_FIFO_Ctrl, and transmits data

out according to the set frame format. The outgoing bit stream can be inverted by appropriately configuring the

register UART_TXD_INV.

The receive-block contains a receive-FIFO buffer, which buffers incoming data awaiting to be processed. The

input bit stream, rxd_in, is fed to the UART controller. Negation of the input stream can be controlled by

configuring the UART_RXD_INV register. Baudrate_Detect measures the baud rate of the input signal by

measuring the minimum pulse width of the input bit stream. Start_Detect is used to detect a START bit in a frame

of incoming data. After detecting the START bit, RX_FSM stores data retrieved from the received frame into

Rx_FIFO through Rx_FIFO_Ctrl.

Software can read data in the Rx_FIFO through the APB. In order to free the CPU from engaging in data transfer

operations, the DMA can be configured for sending or receiving data.

HW_Flow_Ctrl is able to control the data flow of rxd_in and txd_out through standard UART RTS and CTS flow

control signals (rtsn_out and ctsn_in). SW_Flow_Ctrl controls the data flow by inserting special characters in the

incoming and outgoing data flow. When UART is in Light-sleep mode (refer to Chapter RTC), Wakeup_Ctrl will

start counting pulses in rxd_in. If the number of pulses is greater than UART_ACTIVE_THRESHOLD, a wake_up

signal will be generated and sent to RTC. RTC will then wake up the UART controller.

Espressif Systems 194 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

9.3.3 UART RAM

Figure 55: UART shared RAM

Three UART controllers share a 1024 x 8-bit RAM space. As illustrated in Figure 55, RAM is allocated in different

blocks. One block holds 128 x 8-bit data. Figure 55 illustrates the default RAM allocated to Tx_FIFO and

Rx_FIFO of the three UART controllers. Tx_FIFO of UARTn can be extended by setting UARTn_TX_SIZE, while

Rx_FIFO of UARTn can be extended by setting UARTn_RX_SIZE.

NOTICE: Extending the FIFO space of a UART controller may take up the FIFO space of another UART

controller.

If none of the UART controllers is active, setting UART_MEM_PD, UART1_MEM_PD, and UART2_MEM_PD can

prompt the RAM to enter low-power mode.

9.3.4 Baud Rate Detection

Setting UART_AUTOBAUD_EN for a UART controller will enable the baud rate detection function. The

Baudrate_Detect block shown in Figure 54 can filter glitches with a pulse width lower than

UART_GLITCH_FILT.

In order to use the baud rate detection feature, some random data should be sent to the receiver before starting

the UART communication stream. This is required so that the baud rate can be determined based on the pulse

width. UART_LOWPULSE_MIN_CNT stores minimum low-pulse width, UART_HIGHPULSE_MIN_CNT stores

minimum high-pulse width. By reading these two registers, software can calculate the baud rate of the

transmitter.

9.3.5 UART Data Frame

Figure 56 shows the basic data frame structure. A data frame starts with a START condition and ends with a

STOP condition. The START condition requires 1 bit and the STOP condition can be realized using

1/1.5/2/3/4-bit widths (as set by UART_BIT_NUM, UART_DL1_EN, and UAR_DL0_EN). The START is low level,

while the STOP is high level.

Espressif Systems 195 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Figure 56: UART Data Frame Structure

The length of a character (BIT0 to BITn) can comprise 5 to 8 bits and can be configured by UART_BIT_NUM.

When UART_PARITY_EN is set, the UART controller hardware will add the appropriate parity bit after the data.

UART_PARITY is used to select odd parity or even parity. If the receiver detects an error in the input character,

interrupt UART_PARITY_ERR_INT will be generated. If the receiver detects an error in the frame format, interrupt

UART_FRM_ERR_INT will be generated.

Interrupt UART_TX_DONE_INT will be generated when all data in Tx_FIFO have been transmitted. When

UART_TXD_BRK is set, the transmitter sends several NULL characters after the process of sending data is

completed. The number of NULL characters can be configured by UART_TX_BRK_NUM. After the transmitter

finishes sending all NULL characters, interrupt UART_TX_BRK_DONE_INT will be generated. The minimum

interval between data frames can be configured with UART_TX_IDLE_NUM. If the idle time of a data frame is

equal to, or larger than, the configured value of register UART_TX_IDLE_NUM, interrupt

UART_TX_BRK_IDLE_DONE_INT will be generated.

Figure 57: AT_CMD Character Format

Figure 57 shows a special AT_CMD character format. If the receiver constantly receives UART_AT_CMD_CHAR

characters and these characters satisfy the following conditions, interrupt UART_AT_CMD_CHAR_DET_INT will

be generated.

• Between the first UART_AT_CMD_CHAR and the last non-UART_AT_CMD_CHAR, there are at least

UART_PER_IDLE_NUM APB clock cycles.

• Between every UART_AT_CMD_CHAR character there are at least UART_RX_GAP_TOUT APB clock

cycles.

• The number of received UART_AT_CMD_CHAR characters must be equal to, or greater than,

UART_CHAR_NUM.

• Between the last UART_AT_CMD_CHAR character received and the next non-UART_AT_CMD_CHAR,

there are at least UART_POST_IDLE_NUM APB clock cycles.

9.3.6 Flow Control

UART controller supports both hardware and software flow control. Hardware flow control regulates data flow

through input signal dsrn_in and output signal rtsn_out. Software flow control regulates data flow by inserting

special characters in the flow of sent data and by detecting special characters in the flow of received data.

Espressif Systems 196 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

9.3.6.1 Hardware Flow Control

Figure 58: Hardware Flow Control

Figure 58 illustrates how the UART hardware flow control works. In hardware flow control, a high state of the

output signal rtsn_out signifies that a data transmission is requested, while a low state of the same signal notifies

the counterpart to stop data transmission until rtsn_out is pulled high again. There are two ways for a transmitter

to realize hardware flow control:

• UART_RX_FLOW_EN is 0: The level of rtsn_out can be changed by configuring UART_SW_RTS.

• UART_RX_FLOW_EN is 1: If data in Rx_FIFO is greater than UART_RXFIFO_FULL_THRHD, the level of

rtsn_out will be lowered.

If the UART controller detects an edge on ctsn_in, it will generate interrupt UART_CTS_CHG_INT and will stop

transmitting data, once the current data transmission is completed.

The high level of the output signal dtrn_out signifies that the transmitter has finished data preparation. UART

controller will generate interrupt UART_DSR_CHG_INT, after it detects an edge on the input signal dsrn_in. After

the software detects the above-mentioned interrupt, the input signal level of dsrn_in can be figured out by

reading UART_DSRN. The software then decides whether it is able to receive data at that time or not.

Setting UART_LOOPBACK will enable the UART loopback detection function. In this mode, the output signal

txd_out of UART is connected to its input signal rxd_in, rtsn_out is connected to ctsn_in, and dtrn_out is

connected to dsrn_out. If the data transmitted corresponds to the data received, UART is able to transmit and

receive data normally.

9.3.6.2 Software Flow Control

Software can force the transmitter to stop transmitting data by setting UART_FORCE_XOFF, as well as force the

transmitter to continue sending data by setting UART_FORCE_XON.

Espressif Systems 197 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

UART can also control the software flow by transmitting special characters. Setting UART_SW_FLOW_CON_EN

will enable the software flow control function. If the number of data bytes that UART has received exceeds that of

the UART_XOFF threshold, the UART controller can send UART_XOFF_CHAR to instruct its counterpart to stop

data transmission.

When UART_SW_FLOW_CON_EN is 1, software can send flow control characters at any time. When

UART_SEND_XOFF is set, the transmitter will insert a UART_XOFF_CHAR and send it after the current data

transmission is completed. When UART_SEND_XON is set, the transmitter will insert a UART_XON_CHAR and

send it after the current data transmission is completed.

9.3.7 UART DMA

For information on the UART DMA, please refer to Chapter BUS DMA.

9.3.8 UART Interrupts

• UART_AT_CMD_CHAR_DET_INT: Triggered when the receiver detects the configured at_cmd char.

• UART_RS485_CLASH_INT: Triggered when a collision is detected between transmitter and receiver in

RS-485 mode.

• UART_RS485_FRM_ERR_INT: Triggered when a data frame error is detected in RS-485.

• UART_RS485_PARITY_ERR_INT: Triggered when a parity error is detected in RS-485 mode.

• UART_TX_DONE_INT: Triggered when the transmitter has sent out all FIFO data.

• UART_TX_BRK_IDLE_DONE_INT: Triggered when the transmitter’s idle state has been kept to a minimum

after sending the last data.

• UART_TX_BRK_DONE_INT: Triggered when the transmitter completes sending NULL characters, after all

data in transmit-FIFO are sent.

• UART_GLITCH_DET_INT: Triggered when the receiver detects a START bit.

• UART_SW_XOFF_INT: Triggered, if the receiver gets an Xon char when uart_sw_flow_con_en is set to 1.

• UART_SW_XON_INT: Triggered, if the receiver gets an Xoff char when uart_sw_flow_con_en is set to 1.

• UART_RXFIFO_TOUT_INT: Triggered when the receiver takes more time than rx_tout_thrhd to receive a

byte.

• UART_BRK_DET_INT: Triggered when the receiver detects a 0 level after the STOP bit.

• UART_CTS_CHG_INT: Triggered when the receiver detects an edge change of the CTSn signal.

• UART_DSR_CHG_INT: Triggered when the receiver detects an edge change of the DSRn signal.

• UART_RXFIFO_OVF_INT: Triggered when the receiver gets more data than the FIFO can store.

• UART_FRM_ERR_INT: Triggered when the receiver detects a data frame error .

• UART_PARITY_ERR_INT: Triggered when the receiver detects a parity error in the data.

• UART_TXFIFO_EMPTY_INT: Triggered when the amount of data in the transmit-FIFO is less than what

tx_mem_cnttxfifo_cnt specifies.

• UART_RXFIFO_FULL_INT: Triggered when the receiver gets more data than what (rx_flow_thrhd_h3,

rx_flow_thrhd) specifies.

Espressif Systems 198 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

9.3.9 UCHI Interrupts

• UHCI_SEND_A_REG_Q_INT: When using the always_send registers to send a series of short packets, this

is triggered when DMA has sent a short packet.

• UHCI_SEND_S_REG_Q_INT: When using the single_send registers to send a series of short packets, this is

triggered when DMA has sent a short packet.

• UHCI_OUT_TOTAL_EOF_INT: Triggered when all data have been sent.

• UHCI_OUTLINK_EOF_ERR_INT: Triggered when there are some errors in EOF in the outlink descriptor.

• UHCI_IN_DSCR_EMPTY_INT: Triggered when there are not enough inlinks for DMA.

• UHCI_OUT_DSCR_ERR_INT: Triggered when there are some errors in the inlink descriptor.

• UHCI_IN_DSCR_ERR_INT: Triggered when there are some errors in the outlink descriptor.

• UHCI_OUT_EOF_INT: Triggered when the current descriptor’s EOF bit is 1.

• UHCI_OUT_DONE_INT: Triggered when an outlink descriptor is completed.

• UHCI_IN_ERR_EOF_INT: Triggered when there are some errors in EOF in the inlink descriptor.

• UHCI_IN_SUC_EOF_INT: Triggered when a data packet has been received.

• UHCI_IN_DONE_INT: Triggered when an inlink descriptor has been completed.

• UHCI_TX_HUNG_INT: Triggered when DMA takes much time to read data from RAM.

• UHCI_RX_HUNG_INT: Triggered when DMA takes much time to receive data .

• UHCI_TX_START_INT: Triggered when DMA detects a separator char.

• UHCI_RX_START_INT: Triggered when a separator char has been sent.

9.4 Register Summary

Name Description UART0 UART1 UART2 Acc

Configuration registers

UART_CONF0_REG Configuration register 0 0x3FF40020 0x3FF50020 0x3FF6E020 R/W

UART_CONF1_REG Configuration register 1 0x3FF40024 0x3FF50024 0x3FF6E024 R/W

UART_CLKDIV_REG
Clock divider configu-

ration
0x3FF40014 0x3FF50014 0x3FF6E014 R/W

UART_FLOW_CONF_REG
Software flow-control

configuration
0x3FF40034 0x3FF50034 0x3FF6E034 R/W

UART_SWFC_CONF_REG
Software flow-control

character configuration
0x3FF4003C 0x3FF5003C 0x3FF6E03C R/W

UART_SLEEP_CONF_REG
Sleep-mode configura-

tion
0x3FF40038 0x3FF50038 0x3FF6E038 R/W

UART_IDLE_CONF_REG
Frame-end idle config-

uration
0x3FF40040 0x3FF50040 0x3FF6E040 R/W

UART_RS485_CONF_REG
RS485 mode configu-

ration
0x3FF40044 0x3FF50044 0x3FF6E044 R/W

Status registers

Espressif Systems 199 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

UART_STATUS_REG UART status register 0x3FF4001C 0x3FF5001C 0x3FF6E01C RO

Autobaud registers

UART_AUTOBAUD_REG
Autobaud configura-

tion register
0x3FF40018 0x3FF50018 0x3FF6E018 R/W

UART_LOWPULSE_REG

Autobaud minimum

low pulse duration

register

0x3FF40028 0x3FF50028 0x3FF6E028 RO

UART_HIGHPULSE_REG

Autobaud minimum

high pulse duration

register

0x3FF4002C 0x3FF5002C 0x3FF6E02C RO

UART_POSPULSE_REG
Autobaud high pulse

register
0x3FF40068 0x3FF50068 0x3FF6E068 RO

UART_NEGPULSE_REG
Autobaud low pulse

register
0x3FF4006C 0x3FF5006C 0x3FF6E06C RO

UART_RXD_CNT_REG
Autobaud edge change

count register
0x3FF40030 0x3FF50030 0x3FF6E030 RO

AT escape seqence detection configuration

UART_AT_CMD_PRECNT_REG
Pre-sequence timing

configuration
0x3FF40048 0x3FF50048 0x3FF6E048 R/W

UART_AT_CMD_POSTCNT_REG
Post-sequence timing

configuration
0x3FF4004C 0x3FF5004C 0x3FF6E04C R/W

UART_AT_CMD_GAPTOUT_REG Timeout configuration 0x3FF40050 0x3FF50050 0x3FF6E050 R/W

UART_AT_CMD_CHAR_REG
AT escape sequence

detection configuration
0x3FF40054 0x3FF50054 0x3FF6E054 R/W

FIFO configuration

UART_FIFO_REG FIFO data register 0x3FF40000 0x3FF50000 0x3FF6E000 RO

UART_MEM_CONF_REG
UART threshold and al-

location configuration
0x3FF40058 0x3FF50058 0x3FF6E058 R/W

UART_MEM_CNT_STATUS_REG
Receive and transmit

memory configuration
0x3FF40064 0x3FF50064 0x3FF6E064 RO

Interrupt registers

UART_INT_RAW_REG Raw interrupt status 0x3FF40004 0x3FF50004 0x3FF6E004 RO

UART_INT_ST_REG
Masked interrupt sta-

tus
0x3FF40008 0x3FF50008 0x3FF6E008 RO

UART_INT_ENA_REG Interrupt enable bits 0x3FF4000C 0x3FF5000C 0x3FF6E00C R/W

UART_INT_CLR_REG Interrupt clear bits 0x3FF40010 0x3FF50010 0x3FF6E010 WO

Name Description UDMA0 UDMA1 Acc

Configuration registers

UHCI_CONF0_REG
UART and frame separa-

tion config
0x3FF54000 0x3FF4C000 R/W

UHCI_CONF1_REG UHCI config register 0x3FF5402C 0x3FF4C02C R/W

UHCI_ESCAPE_CONF_REG
Escape characters configu-

ration
0x3FF54064 0x3FF4C064 R/W

UHCI_HUNG_CONF_REG Timeout configuration 0x3FF54068 0x3FF4C068 R/W

Espressif Systems 200 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

UHCI_ESC_CONF0_REG
Escape sequence configu-

ration register 0
0x3FF540B0 0x3FF4C0B0 R/W

UHCI_ESC_CONF1_REG
Escape sequence configu-

ration register 1
0x3FF540B4 0x3FF4C0B4 R/W

UHCI_ESC_CONF2_REG
Escape sequence configu-

ration register 2
0x3FF540B8 0x3FF4C0B8 R/W

UHCI_ESC_CONF3_REG
Escape sequence configu-

ration register 3
0x3FF540BC 0x3FF4C0BC R/W

DMA configuration

UHCI_DMA_OUT_LINK_REG
Link descriptor address

and control
0x3FF54024 0x3FF4C024 R/W

UHCI_DMA_IN_LINK_REG
Link descriptor address

and control
0x3FF54028 0x3FF4C028 R/W

UHCI_DMA_OUT_PUSH_REG FIFO data push register 0x3FF54018 0x3FF4C018 R/W

UHCI_DMA_IN_POP_REG FIFO data pop register 0x3FF54020 0x3FF4C020 RO

DMA status

UHCI_DMA_OUT_STATUS_REG DMA FIFO status 0x3FF54014 0x3FF4C014 RO

UHCI_DMA_OUT_EOF_DES_ADDR_REG
Out EOF link descriptor ad-

dress on success
0x3FF54038 0x3FF4C038 RO

UHCI_DMA_OUT_EOF_BFR_DES_ADDR_REG
Out EOF link descriptor ad-

dress on error
0x3FF54044 0x3FF4C044 RO

UHCI_DMA_IN_SUC_EOF_DES_ADDR_REG
In EOF link descriptor ad-

dress on success
0x3FF5403C 0x3FF4C03C RO

UHCI_DMA_IN_ERR_EOF_DES_ADDR_REG
In EOF link descriptor ad-

dress on error
0x3FF54040 0x3FF4C040 RO

UHCI_DMA_IN_DSCR_REG
Current inlink descriptor,

first word
0x3FF5404C 0x3FF4C04C RO

UHCI_DMA_IN_DSCR_BF0_REG
Current inlink descriptor,

second word
0x3FF54050 0x3FF4C050 RO

UHCI_DMA_IN_DSCR_BF1_REG
Current inlink descriptor,

third word
0x3FF54054 0x3FF4C054 RO

UHCI_DMA_OUT_DSCR_REG
Current outlink descriptor,

first word
0x3FF54058 0x3FF4C058 RO

UHCI_DMA_OUT_DSCR_BF0_REG
Current outlink descriptor,

second word
0x3FF5405C 0x3FF4C05C RO

UHCI_DMA_OUT_DSCR_BF1_REG
Current outlink descriptor,

third word
0x3FF54060 0x3FF4C060 RO

Interrupt registers

UHCI_INT_RAW_REG Raw interrupt status 0x3FF54004 0x3FF4C004 RO

UHCI_INT_ST_REG Masked interrupt status 0x3FF54008 0x3FF4C008 RO

UHCI_INT_ENA_REG Interrupt enable bits 0x3FF5400C 0x3FF4C00C R/W

UHCI_INT_CLR_REG Interrupt clear bits 0x3FF54010 0x3FF4C010 WO

Espressif Systems 201 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

9.5 Registers

Register 9.1: UART_FIFO_REG (0x0)

(re
se

rve
d)

0 0

31 8

UART_
RXF

IFO
_R

D_B
YTE

0 0 0 0 0 0 0 0

7 0

Reset

UART_RXFIFO_RD_BYTE This register stores one byte of data, as read from the Rx FIFO. (RO)

Espressif Systems 202 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.2: UART_INT_RAW_REG (0x4)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

UART_
AT

_C
M

D_C
HAR_D

ET_
IN

T_
RAW

0

18

UART_
RS48

5_
CLA

SH_IN
T_

RAW

0

17

UART_
RS48

5_
FR

M
_E

RR_IN
T_

RAW

0

16

UART_
RS48

5_
PA

RITY
_E

RR_IN
T_

RAW

0

15

UART_
TX

_D
ONE_IN

T_
RAW

0

14

UART_
TX

_B
RK_ID

LE
_D

ONE_IN
T_

RAW

0

13

UART_
TX

_B
RK_D

ONE_IN
T_

RAW

0

12

UART_
GLIT

CH_D
ET_

IN
T_

RAW

0

11

UART_
SW

_X
OFF

_IN
T_

RAW

0

10

UART_
SW

_X
ON_IN

T_
RAW

0

9

UART_
RXF

IFO
_T

OUT_
IN

T_
RAW

0

8

UART_
BRK_D

ET_
IN

T_
RAW

0

7

UART_
CTS

_C
HG_IN

T_
RAW

0

6

UART_
DSR_C

HG_IN
T_

RAW

0

5

UART_
RXF

IFO
_O

VF_
IN

T_
RAW

0

4

UART_
FR

M
_E

RR_IN
T_

RAW

0

3

UART_
PA

RITY
_E

RR_IN
T_

RAW

0

2

UART_
TX

FIF
O_E

M
PTY

_IN
T_

RAW

0

1

UART_
RXF

IFO
_F

ULL
_IN

T_
RAW

0

0

Reset

UART_AT_CMD_CHAR_DET_INT_RAW The raw interrupt status bit for the UART_AT_CMD_CHAR_DET_INT

interrupt. (RO)

UART_RS485_CLASH_INT_RAW The raw interrupt status bit for the UART_RS485_CLASH_INT interrupt. (RO)

UART_RS485_FRM_ERR_INT_RAW The raw interrupt status bit for the UART_RS485_FRM_ERR_INT interrupt.

(RO)

UART_RS485_PARITY_ERR_INT_RAW The raw interrupt status bit for the UART_RS485_PARITY_ERR_INT in-

terrupt. (RO)

UART_TX_DONE_INT_RAW The raw interrupt status bit for the UART_TX_DONE_INT interrupt. (RO)

UART_TX_BRK_IDLE_DONE_INT_RAW The raw interrupt status bit for the UART_TX_BRK_IDLE_DONE_INT

interrupt. (RO)

UART_TX_BRK_DONE_INT_RAW The raw interrupt status bit for the UART_TX_BRK_DONE_INT interrupt. (RO)

UART_GLITCH_DET_INT_RAW The raw interrupt status bit for the UART_GLITCH_DET_INT interrupt. (RO)

UART_SW_XOFF_INT_RAW The raw interrupt status bit for the UART_SW_XOFF_INT interrupt. (RO)

UART_SW_XON_INT_RAW The raw interrupt status bit for the UART_SW_XON_INT interrupt. (RO)

UART_RXFIFO_TOUT_INT_RAW The raw interrupt status bit for the UART_RXFIFO_TOUT_INT interrupt. (RO)

UART_BRK_DET_INT_RAW The raw interrupt status bit for the UART_BRK_DET_INT interrupt. (RO)

UART_CTS_CHG_INT_RAW The raw interrupt status bit for the UART_CTS_CHG_INT interrupt. (RO)

UART_DSR_CHG_INT_RAW The raw interrupt status bit for the UART_DSR_CHG_INT interrupt. (RO)

UART_RXFIFO_OVF_INT_RAW The raw interrupt status bit for the UART_RXFIFO_OVF_INT interrupt. (RO)

UART_FRM_ERR_INT_RAW The raw interrupt status bit for the UART_FRM_ERR_INT interrupt. (RO)

UART_PARITY_ERR_INT_RAW The raw interrupt status bit for the UART_PARITY_ERR_INT interrupt. (RO)

UART_TXFIFO_EMPTY_INT_RAW The raw interrupt status bit for the UART_TXFIFO_EMPTY_INT interrupt. (RO)

UART_RXFIFO_FULL_INT_RAW The raw interrupt status bit for the UART_RXFIFO_FULL_INT interrupt. (RO)

Espressif Systems 203 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.3: UART_INT_ST_REG (0x8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

UART_
AT

_C
M

D_C
HAR_D

ET_
IN

T_
ST

0

18

UART_
RS48

5_
CLA

SH_IN
T_

ST

0

17

UART_
RS48

5_
FR

M
_E

RR_IN
T_

ST

0

16

UART_
RS48

5_
PA

RITY
_E

RR_IN
T_

ST

0

15

UART_
TX

_D
ONE_IN

T_
ST

0

14

UART_
TX

_B
RK_ID

LE
_D

ONE_IN
T_

ST

0

13

UART_
TX

_B
RK_D

ONE_IN
T_

ST

0

12

UART_
GLIT

CH_D
ET_

IN
T_

ST

0

11

UART_
SW

_X
OFF

_IN
T_

ST

0

10

UART_
SW

_X
ON_IN

T_
ST

0

9

UART_
RXF

IFO
_T

OUT_
IN

T_
ST

0

8

UART_
BRK_D

ET_
IN

T_
ST

0

7

UART_
CTS

_C
HG_IN

T_
ST

0

6

UART_
DSR_C

HG_IN
T_

ST

0

5

UART_
RXF

IFO
_O

VF_
IN

T_
ST

0

4

UART_
FR

M
_E

RR_IN
T_

ST

0

3

UART_
PA

RITY
_E

RR_IN
T_

ST

0

2

UART_
TX

FIF
O_E

M
PTY

_IN
T_

ST

0

1

UART_
RXF

IFO
_F

ULL
_IN

T_
ST

0

0

Reset

UART_AT_CMD_CHAR_DET_INT_ST The masked interrupt status bit for the UART_AT_CMD_CHAR_DET_INT

interrupt. (RO)

UART_RS485_CLASH_INT_ST The masked interrupt status bit for the UART_RS485_CLASH_INT interrupt. (RO)

UART_RS485_FRM_ERR_INT_ST The masked interrupt status bit for the UART_RS485_FRM_ERR_INT inter-

rupt. (RO)

UART_RS485_PARITY_ERR_INT_ST The masked interrupt status bit for the UART_RS485_PARITY_ERR_INT

interrupt. (RO)

UART_TX_DONE_INT_ST The masked interrupt status bit for the UART_TX_DONE_INT interrupt. (RO)

UART_TX_BRK_IDLE_DONE_INT_ST The masked interrupt status bit for the UART_TX_BRK_IDLE_DONE_INT

interrupt. (RO)

UART_TX_BRK_DONE_INT_ST The masked interrupt status bit for the UART_TX_BRK_DONE_INT interrupt.

(RO)

UART_GLITCH_DET_INT_ST The masked interrupt status bit for the UART_GLITCH_DET_INT interrupt. (RO)

UART_SW_XOFF_INT_ST The masked interrupt status bit for the UART_SW_XOFF_INT interrupt. (RO)

UART_SW_XON_INT_ST The masked interrupt status bit for the UART_SW_XON_INT interrupt. (RO)

UART_RXFIFO_TOUT_INT_ST The masked interrupt status bit for the UART_RXFIFO_TOUT_INT interrupt. (RO)

UART_BRK_DET_INT_ST The masked interrupt status bit for the UART_BRK_DET_INT interrupt. (RO)

UART_CTS_CHG_INT_ST The masked interrupt status bit for the UART_CTS_CHG_INT interrupt. (RO)

UART_DSR_CHG_INT_ST The masked interrupt status bit for the UART_DSR_CHG_INT interrupt. (RO)

UART_RXFIFO_OVF_INT_ST The masked interrupt status bit for the UART_RXFIFO_OVF_INT interrupt. (RO)

UART_FRM_ERR_INT_ST The masked interrupt status bit for the UART_FRM_ERR_INT interrupt. (RO)

UART_PARITY_ERR_INT_ST The masked interrupt status bit for the UART_PARITY_ERR_INT interrupt. (RO)

UART_TXFIFO_EMPTY_INT_ST The masked interrupt status bit for the UART_TXFIFO_EMPTY_INT interrupt.

(RO)

UART_RXFIFO_FULL_INT_ST The masked interrupt status bit for UART_RXFIFO_FULL_INT. (RO)

Espressif Systems 204 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.4: UART_INT_ENA_REG (0xC)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

UART_
AT

_C
M

D_C
HAR_D

ET_
IN

T_
ENA

0

18

UART_
RS48

5_
CLA

SH_IN
T_

ENA

0

17

UART_
RS48

5_
FR

M
_E

RR_IN
T_

ENA

0

16

UART_
RS48

5_
PA

RITY
_E

RR_IN
T_

ENA

0

15

UART_
TX

_D
ONE_IN

T_
ENA

0

14

UART_
TX

_B
RK_ID

LE
_D

ONE_IN
T_

ENA

0

13

UART_
TX

_B
RK_D

ONE_IN
T_

ENA

0

12

UART_
GLIT

CH_D
ET_

IN
T_

ENA

0

11

UART_
SW

_X
OFF

_IN
T_

ENA

0

10

UART_
SW

_X
ON_IN

T_
ENA

0

9

UART_
RXF

IFO
_T

OUT_
IN

T_
ENA

0

8

UART_
BRK_D

ET_
IN

T_
ENA

0

7

UART_
CTS

_C
HG_IN

T_
ENA

0

6

UART_
DSR_C

HG_IN
T_

ENA

0

5

UART_
RXF

IFO
_O

VF_
IN

T_
ENA

0

4

UART_
FR

M
_E

RR_IN
T_

ENA

0

3

UART_
PA

RITY
_E

RR_IN
T_

ENA

0

2

UART_
TX

FIF
O_E

M
PTY

_IN
T_

ENA

0

1

UART_
RXF

IFO
_F

ULL
_IN

T_
ENA

0

0

Reset

UART_AT_CMD_CHAR_DET_INT_ENA The interrupt enable bit for the UART_AT_CMD_CHAR_DET_INT inter-

rupt. (R/W)

UART_RS485_CLASH_INT_ENA The interrupt enable bit for the UART_RS485_CLASH_INT interrupt. (R/W)

UART_RS485_FRM_ERR_INT_ENA The interrupt enable bit for the UART_RS485_FRM_ERR_INT interrupt.

(R/W)

UART_RS485_PARITY_ERR_INT_ENA The interrupt enable bit for the UART_RS485_PARITY_ERR_INT inter-

rupt. (R/W)

UART_TX_DONE_INT_ENA The interrupt enable bit for the UART_TX_DONE_INT interrupt. (R/W)

UART_TX_BRK_IDLE_DONE_INT_ENA The interrupt enable bit for the UART_TX_BRK_IDLE_DONE_INT inter-

rupt. (R/W)

UART_TX_BRK_DONE_INT_ENA The interrupt enable bit for the UART_TX_BRK_DONE_INT interrupt. (R/W)

UART_GLITCH_DET_INT_ENA The interrupt enable bit for the UART_GLITCH_DET_INT interrupt. (R/W)

UART_SW_XOFF_INT_ENA The interrupt enable bit for the UART_SW_XOFF_INT interrupt. (R/W)

UART_SW_XON_INT_ENA The interrupt enable bit for the UART_SW_XON_INT interrupt. (R/W)

UART_RXFIFO_TOUT_INT_ENA The interrupt enable bit for the UART_RXFIFO_TOUT_INT interrupt. (R/W)

UART_BRK_DET_INT_ENA The interrupt enable bit for the UART_BRK_DET_INT interrupt. (R/W)

UART_CTS_CHG_INT_ENA The interrupt enable bit for the UART_CTS_CHG_INT interrupt. (R/W)

UART_DSR_CHG_INT_ENA The interrupt enable bit for the UART_DSR_CHG_INT interrupt. (R/W)

UART_RXFIFO_OVF_INT_ENA The interrupt enable bit for the UART_RXFIFO_OVF_INT interrupt. (R/W)

UART_FRM_ERR_INT_ENA The interrupt enable bit for the UART_FRM_ERR_INT interrupt. (R/W)

UART_PARITY_ERR_INT_ENA The interrupt enable bit for the UART_PARITY_ERR_INT interrupt. (R/W)

UART_TXFIFO_EMPTY_INT_ENA The interrupt enable bit for the UART_TXFIFO_EMPTY_INT interrupt. (R/W)

UART_RXFIFO_FULL_INT_ENA The interrupt enable bit for the UART_RXFIFO_FULL_INT interrupt. (R/W)

Espressif Systems 205 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.5: UART_INT_CLR_REG (0x10)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

UART_
AT

_C
M

D_C
HAR_D

ET_
IN

T_
CLR

0

18

UART_
RS48

5_
CLA

SH_IN
T_

CLR

0

17

UART_
RS48

5_
FR

M
_E

RR_IN
T_

CLR

0

16

UART_
RS48

5_
PA

RITY
_E

RR_IN
T_

CLR

0

15

UART_
TX

_D
ONE_IN

T_
CLR

0

14

UART_
TX

_B
RK_ID

LE
_D

ONE_IN
T_

CLR

0

13

UART_
TX

_B
RK_D

ONE_IN
T_

CLR

0

12

UART_
GLIT

CH_D
ET_

IN
T_

CLR

0

11

UART_
SW

_X
OFF

_IN
T_

CLR

0

10

UART_
SW

_X
ON_IN

T_
CLR

0

9

UART_
RXF

IFO
_T

OUT_
IN

T_
CLR

0

8

UART_
BRK_D

ET_
IN

T_
CLR

0

7

UART_
CTS

_C
HG_IN

T_
CLR

0

6

UART_
DSR_C

HG_IN
T_

CLR

0

5

UART_
RXF

IFO
_O

VF_
IN

T_
CLR

0

4

UART_
FR

M
_E

RR_IN
T_

CLR

0

3

UART_
PA

RITY
_E

RR_IN
T_

CLR

0

2

UART_
TX

FIF
O_E

M
PTY

_IN
T_

CLR

0

1

UART_
RXF

IFO
_F

ULL
_IN

T_
CLR

0

0

Reset

UART_AT_CMD_CHAR_DET_INT_CLR Set this bit to clear the UART_AT_CMD_CHAR_DET_INT in-

terrupt. (WO)

UART_RS485_CLASH_INT_CLR Set this bit to clear the UART_RS485_CLASH_INT interrupt. (WO)

UART_RS485_FRM_ERR_INT_CLR Set this bit to clear the UART_RS485_FRM_ERR_INT interrupt.

(WO)

UART_RS485_PARITY_ERR_INT_CLR Set this bit to clear the UART_RS485_PARITY_ERR_INT in-

terrupt. (WO)

UART_TX_DONE_INT_CLR Set this bit to clear the UART_TX_DONE_INT interrupt. (WO)

UART_TX_BRK_IDLE_DONE_INT_CLR Set this bit to clear the UART_TX_BRK_IDLE_DONE_INT

interrupt. (WO)

UART_TX_BRK_DONE_INT_CLR Set this bit to clear the UART_TX_BRK_DONE_INT interrupt. (WO)

UART_GLITCH_DET_INT_CLR Set this bit to clear the UART_GLITCH_DET_INT interrupt. (WO)

UART_SW_XOFF_INT_CLR Set this bit to clear the UART_SW_XOFF_INT interrupt. (WO)

UART_SW_XON_INT_CLR Set this bit to clear the UART_SW_XON_INT interrupt. (WO)

UART_RXFIFO_TOUT_INT_CLR Set this bit to clear the UART_RXFIFO_TOUT_INT interrupt. (WO)

UART_BRK_DET_INT_CLR Set this bit to clear the UART_BRK_DET_INT interrupt. (WO)

UART_CTS_CHG_INT_CLR Set this bit to clear the UART_CTS_CHG_INT interrupt. (WO)

UART_DSR_CHG_INT_CLR Set this bit to clear the UART_DSR_CHG_INT interrupt. (WO)

UART_RXFIFO_OVF_INT_CLR Set this bit to clear the UART_RXFIFO_OVF_INT interrupt. (WO)

UART_FRM_ERR_INT_CLR Set this bit to clear the UART_FRM_ERR_INT interrupt. (WO)

UART_PARITY_ERR_INT_CLR Set this bit to clear the UART_PARITY_ERR_INT interrupt. (WO)

UART_TXFIFO_EMPTY_INT_CLR Set this bit to clear the UART_TXFIFO_EMPTY_INT interrupt.

(WO)

UART_RXFIFO_FULL_INT_CLR Set this bit to clear the UART_RXFIFO_FULL_INT interrupt. (WO)

Espressif Systems 206 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.6: UART_CLKDIV_REG (0x14)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UART_
CLK

DIV_F
RAG

0x00

23 20

UART_
CLK

DIV

0x0002B6

19 0

Reset

UART_CLKDIV_FRAG The decimal part of the frequency divider factor. (R/W)

UART_CLKDIV The integral part of the frequency divider factor. (R/W)

Register 9.7: UART_AUTOBAUD_REG (0x18)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

UART_
GLIT

CH_F
ILT

0x010

15 8

(re
se

rve
d)

0 0 0 0 0 0 0

7 1

UART_
AUTO

BAUD_E
N

0

0

Reset

UART_GLITCH_FILT When the input pulse width is lower than this value, the pulse is ignored. This

register is used in the autobauding process. (R/W)

UART_AUTOBAUD_EN This is the enable bit for autobaud. (R/W)

Espressif Systems 207 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.8: UART_STATUS_REG (0x1C)

UART_
TX

D

0x000

31

UART_
RTS

N

0

30

UART_
DTR

N

0

29

(re
se

rve
d)

0

28

UART_
ST_

UTX
_O

UT

0 0 0 0

27 24

UART_
TX

FIF
O_C

NT

0 0 0 0 0 0 0 0

23 16

UART_
RXD

0

15

UART_
CTS

N

0

14

UART_
DSRN

0

13

(re
se

rve
d)

0

12

UART_
ST_

URX_
OUT

0 0 0 0

11 8

UART_
RXF

IFO
_C

NT

0 0 0 0 0 0 0 0

7 0

Reset

UART_TXD This bit represents the level of the internal UART RxD signal. (RO)

UART_RTSN This bit corresponds to the level of the internal UART CTS signal. (RO)

UART_DTRN This bit corresponds to the level of the internal UAR DSR signal. (RO)

UART_ST_UTX_OUT This register stores the state of the transmitter’s finite state machine. 0:

TX_IDLE; 1: TX_STRT; 2: TX_DAT0; 3: TX_DAT1; 4: TX_DAT2; 5: TX_DAT3; 6: TX_DAT4; 7:

TX_DAT5; 8: TX_DAT6; 9: TX_DAT7; 10: TX_PRTY; 11: TX_STP1; 12: TX_STP2; 13: TX_DL0;

14: TX_DL1. (RO)

UART_TXFIFO_CNT (tx_mem_cnt, txfifo_cnt) stores the number of bytes of valid data in transmit-

FIFO. tx_mem_cnt stores the three most significant bits, txfifo_cnt stores the eight least significant

bits. (RO)

UART_RXD This bit corresponds to the level of the internal UART RxD signal. (RO)

UART_CTSN This bit corresponds to the level of the internal UART CTS signal. (RO)

UART_DSRN This bit corresponds to the level of the internal UAR DSR signal. (RO)

UART_ST_URX_OUT This register stores the value of the receiver’s finite state machine. 0: RX_IDLE;

1: RX_STRT; 2: RX_DAT0; 3: RX_DAT1; 4: RX_DAT2; 5: RX_DAT3; 6: RX_DAT4; 7: RX_DAT5; 8:

RX_DAT6; 9: RX_DAT7; 10: RX_PRTY; 11: RX_STP1; 12:RX_STP2; 13: RX_DL1. (RO)

UART_RXFIFO_CNT (rx_mem_cnt, rxfifo_cnt) stores the number of bytes of valid data in the receive-

FIFO. rx_mem_cnt register stores the three most significant bits, rxfifo_cnt stores the eight least

significant bits. (RO)

Espressif Systems 208 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.9: UART_CONF0_REG (0x20)

(re
se

rve
d)

0 0 0 0

31 28

UART_
TIC

K_R
EF_

ALW
AY

S_O
N

1

27

(re
se

rve
d)

0 0

26 25

UART_
DTR

_IN
V

0

24

UART_
RTS

_IN
V

0

23

UART_
TX

D_IN
V

0

22

UART_
DSR_IN

V

0

21

UART_
CTS

_IN
V

0

20

UART_
RXD

_IN
V

0

19

UART_
TX

FIF
O_R

ST

0

18

UART_
RXF

IFO
_R

ST

0

17

UART_
IR

DA_E
N

0

16

UART_
TX

_F
LO

W
_E

N

0

15

UART_
LO

OPBACK

0

14

UART_
IR

DA_R
X_

IN
V

0

13

UART_
IR

DA_T
X_

IN
V

0

12

UART_
IR

DA_W
CTL

0

11

UART_
IR

DA_T
X_

EN

0

10

UART_
IR

DA_D
PLX

0

9

UART_
TX

D_B
RK

0

8

UART_
SW

_D
TR

0

7

UART_
SW

_R
TS

0

6

UART_
STO

P_B
IT_

NUM

1

5 4

UART_
BIT_

NUM

3

3 2

UART_
PA

RITY
_E

N

0

1

UART_
PA

RITY

0

0

Reset

UART_TICK_REF_ALWAYS_ON This register is used to select the clock; 1: APB clock; 0: REF_TICK. (R/W)

UART_DTR_INV Set this bit to invert the level of the UART DTR signal. (R/W)

UART_RTS_INV Set this bit to invert the level of the UART RTS signal. (R/W)

UART_TXD_INV Set this bit to invert the level of the UART TxD signal. (R/W)

UART_DSR_INV Set this bit to invert the level of the UART DSR signal. (R/W)

UART_CTS_INV Set this bit to invert the level of the UART CTS signal. (R/W)

UART_RXD_INV Set this bit to invert the level of the UART Rxd signal. (R/W)

UART_TXFIFO_RST Set this bit to reset the UART transmit-FIFO. (R/W)

UART_RXFIFO_RST Set this bit to reset the UART receive-FIFO. (R/W)

UART_IRDA_EN Set this bit to enable the IrDA protocol. (R/W)

UART_TX_FLOW_EN Set this bit to enable the flow control function for the transmitter. (R/W)

UART_LOOPBACK Set this bit to enable the UART loopback test mode. (R/W)

UART_IRDA_RX_INV Set this bit to invert the level of the IrDA receiver. (R/W)

UART_IRDA_TX_INV Set this bit to invert the level of the IrDA transmitter. (R/W)

UART_IRDA_WCTL 1: The IrDA transmitter’s 11th bit is the same as its 10th bit; 0: set IrDA transmitter’s 11th

bit to 0. (R/W)

UART_IRDA_TX_EN This is the start enable bit of the IrDA transmitter. (R/W)

UART_IRDA_DPLX Set this bit to enable the IrDA loopback mode. (R/W)

UART_TXD_BRK Set this bit to enable the transmitter to send NULL, when the process of sending data is com-

pleted. (R/W)

UART_SW_DTR This register is used to configure the software DTR signal used in software flow control. (R/W)

UART_SW_RTS This register is used to configure the software RTS signal used in software flow control. (R/W)

UART_STOP_BIT_NUM This register is used to set the length of the stop bit; 1: 1 bit, 2: 1.5 bits. (R/W)

UART_BIT_NUM This register is used to set the length of data; 0: 5 bits, 1: 6 bits, 2: 7 bits, 3: 8 bits. (R/W)

UART_PARITY_EN Set this bit to enable the UART parity check. (R/W)

UART_PARITY This register is used to configure the parity check mode; 0: even, 1: odd. (R/W)

Espressif Systems 209 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.10: UART_CONF1_REG (0x24)

UART_
RX_

TO
UT_

EN

0

31

UART_
RX_

TO
UT_

TH
RHD

0 0 0 0 0 0 0

30 24

UART_
RX_

FL
OW

_E
N

0

23

UART_
RX_

FL
OW

_T
HRHD

0x00

22 16

(re
se

rve
d)

0

15

UART_
TX

FIF
O_E

M
PTY

_T
HRHD

0x60

14 8

(re
se

rve
d)

0

7

UART_
RXF

IFO
_F

ULL
_T

HRHD

0x60

6 0

Reset

UART_RX_TOUT_EN This is the enable bit for the UART receive-timeout function. (R/W)

UART_RX_TOUT_THRHD This register is used to configure the UART receiver’s timeout value when

receiving a byte. (R/W)

UART_RX_FLOW_EN This is the flow enable bit of the UART receiver; 1: choose software flow control

by configuring the sw_rts signal; 0: disable software flow control. (R/W)

UART_RX_FLOW_THRHD When the receiver gets more data than its threshold value, the receiver

produces a signal that tells the transmitter to stop transferring data. The threshold value is

(rx_flow_thrhd_h3, rx_flow_thrhd). (R/W)

UART_TXFIFO_EMPTY_THRHD When the data amount in transmit-FIFO is less than its thresh-

old value, it will produce a TXFIFO_EMPTY_INT_RAW interrupt. The threshold value is

(tx_mem_empty_thrhd, txfifo_empty_thrhd). (R/W)

UART_RXFIFO_FULL_THRHD When the receiver gets more data than its threshold value, the re-

ceiver will produce an RXFIFO_FULL_INT_RAW interrupt. The threshold value is (rx_flow_thrhd_h3,

rxfifo_full_thrhd). (R/W)

Register 9.11: UART_LOWPULSE_REG (0x28)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UART_
LO

W
PULS

E_M
IN

_C
NT

0x0FFFFF

19 0

Reset

UART_LOWPULSE_MIN_CNT This register stores the value of the minimum duration of the low-level

pulse. It is used in the baud rate detection process. (RO)

Espressif Systems 210 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.12: UART_HIGHPULSE_REG (0x2C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UART_
HIG

HPULS
E_M

IN
_C

NT

0x0FFFFF

19 0

Reset

UART_HIGHPULSE_MIN_CNT This register stores the value of the minimum duration of the high

level pulse. It is used in baud rate detection process. (RO)

Register 9.13: UART_RXD_CNT_REG (0x30)

(re
se

rve
d)

0 0

31 10

UART_
RXD

_E
DGE_C

NT

0x000

9 0

Reset

UART_RXD_EDGE_CNT This register stores the count of the RxD edge change. It is used in the

baud rate detection process. (RO)

Register 9.14: UART_FLOW_CONF_REG (0x34)

(re
se

rve
d)

0 0

31 6

UART_
SEND_X

OFF

0

5

UART_
SEND_X

ON

0

4

UART_
FO

RCE_X
OFF

0

3

UART_
FO

RCE_X
ON

0

2

UART_
XO

NOFF
_D

EL

0

1

UART_
SW

_F
LO

W
_C

ON_E
N

0

0

Reset

UART_SEND_XOFF Hardware auto-clear; set to 1 to send Xoff char. (R/W)

UART_SEND_XON Hardware auto-clear; set to 1 to send Xon char. (R/W)

UART_FORCE_XOFF Set this bit to set the CTSn and enable the transmitter to continue sending

data. (R/W)

UART_FORCE_XON Set this bit to clear the CTSn and stop the transmitter from sending data. (R/W)

UART_XONOFF_DEL Set this bit to remove the flow-control char from the received data. (R/W)

UART_SW_FLOW_CON_EN Set this bit to enable software flow control. It is used with register

sw_xon or sw_xoff. (R/W)

Espressif Systems 211 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.15: UART_SLEEP_CONF_REG (0x38)

(re
se

rve
d)

0 0

31 10

UART_
ACTIV

E_T
HRESHOLD

0x0F0

9 0

Reset

UART_ACTIVE_THRESHOLD When the input RxD edge changes more times than what this register

indicates, the system emerges from Light-sleep mode and becomes active. (R/W)

Register 9.16: UART_SWFC_CONF_REG (0x3C)

UART_
XO

FF
_C

HAR

0x013

31 24

UART_
XO

N_C
HAR

0x011

23 16

UART_
XO

FF
_T

HRESHOLD

0x0E0

15 8

UART_
XO

N_T
HRESHOLD

0x000

7 0

Reset

UART_XOFF_CHAR This register stores the Xoff flow control char. (R/W)

UART_XON_CHAR This register stores the Xon flow control char. (R/W)

UART_XOFF_THRESHOLD When the data amount in receive-FIFO is less than what this register

indicates, it will send an Xon char, with uart_sw_flow_con_en set to 1. (R/W)

UART_XON_THRESHOLD When the data amount in receive-FIFO is more than what this register

indicates, it will send an Xoff char, with uart_sw_flow_con_en set to 1. (R/W)

Espressif Systems 212 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.17: UART_IDLE_CONF_REG (0x40)

(re
se

rve
d)

0 0 0 0

31 28

UART_
TX

_B
RK_N

UM

0x00A

27 20

UART_
TX

_ID
LE

_N
UM

0x100

19 10

UART_
RX_

ID
LE

_T
HRHD

0x100

9 0

Reset

UART_TX_BRK_NUM This register is used to configure the number of zeros (0) sent, after the process

of sending data is completed. It is active when txd_brk is set to 1. (R/W)

UART_TX_IDLE_NUM This register is used to configure the duration between transfers. (R/W)

UART_RX_IDLE_THRHD When the receiver takes more time to receive Byte data than what this

register indicates, it will produce a frame-end signal. (R/W)

Register 9.18: UART_RS485_CONF_REG (0x44)

(re
se

rve
d)

0 0

31 10

UART_
RS48

5_
TX

_D
LY

_N
UM

0 0 0 0

9 6

UART_
RS48

5_
RX_

DLY
_N

UM

0

5

UART_
RS48

5R
XB

Y_T
X_

EN

0

4

UART_
RS48

5T
X_

RX_
EN

0

3

UART_
DL1

_E
N

0

2

UART_
DL0

_E
N

0

1

UART_
RS48

5_
EN

0

0

Reset

UART_RS485_TX_DLY_NUM This register is used to delay the transmitter’s internal data signal.

(R/W)

UART_RS485_RX_DLY_NUM This register is used to delay the receiver’s internal data signal. (R/W)

UART_RS485RXBY_TX_EN 1: enable the RS-485 transmitter to send data, when the RS-485 re-

ceiver line is busy; 0: the RS-485 transmitter should not send data, when its receiver is busy.

(R/W)

UART_RS485TX_RX_EN Set this bit to enable the transmitter’s output signal loop back to the re-

ceiver’s input signal. (R/W)

UART_DL1_EN Set this bit to delay the STOP bit by 1 bit. (R/W)

UART_DL0_EN Set this bit to delay the STOP bit by 1 bit. (R/W)

UART_RS485_EN Set this bit to choose the RS-485 mode. (R/W)

Espressif Systems 213 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.19: UART_AT_CMD_PRECNT_REG (0x48)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UART_
PRE_ID

LE
_N

UM

0x0186A00

23 0

Reset

UART_PRE_IDLE_NUM This register is used to configure the idle-time duration before the first

at_cmd is received by the receiver. When the duration is less than what this register indicates,

it will not take the next data received as an at_cmd char. (R/W)

Register 9.20: UART_AT_CMD_POSTCNT_REG (0x4c)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UART_
POST_

ID
LE

_N
UM

0x0186A00

23 0

Reset

UART_POST_IDLE_NUM This register is used to configure the duration between the last at_cmd

and the next data. When the duration is less than what this register indicates, it will not take the

previous data as an at_cmd char. (R/W)

Register 9.21: UART_AT_CMD_GAPTOUT_REG (0x50)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UART_
RX_

GAP_T
OUT

0x0001E00

23 0

Reset

UART_RX_GAP_TOUT This register is used to configure the duration between the at_cmd chars.

When the duration is less than what this register indicates, it will not take the data as continuous

at_cmd chars. (R/W)

Espressif Systems 214 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.22: UART_AT_CMD_CHAR_REG (0x54)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

UART_
CHAR_N

UM

0x003

15 8

UART_
AT

_C
M

D_C
HAR

0x02B

7 0

Reset

UART_CHAR_NUM This register is used to configure the number of continuous at_cmd chars re-

ceived by the receiver. (R/W)

UART_AT_CMD_CHAR This register is used to configure the content of an at_cmd char. (R/W)

Register 9.23: UART_MEM_CONF_REG (0x58)

(re
se

rve
d)

0

31

UART_
TX

_M
EM

_E
M

PTY
_T

HRHD

0x0

30 28

UART_
RX_

M
EM

_F
ULL

_T
HRHD

0x0

27 25

UART_
XO

FF
_T

HRESHOLD
_H

2

0x0

24 23

UART_
XO

N_T
HRESHOLD

_H
2

0x0

22 21

UART_
RX_

TO
UT_

TH
RHD_H

3

0x0

20 18

UART_
RX_

FL
OW

_T
HRHD_H

3

0x0

17 15

(re
se

rve
d)

0 0 0 0

14 11

UART_
TX

_S
IZE

0x01

10 7

UART_
RX_

SIZE

0x01

6 3

(re
se

rve
d)

0 0

2 1

UART_
M

EM
_P

D

0

0

Reset

UART_TX_MEM_EMPTY_THRHD Refer to the description of txfifo_empty_thrhd. (R/W)

UART_RX_MEM_FULL_THRHD Refer to the description of rxfifo_full_thrhd. (R/W)

UART_XOFF_THRESHOLD_H2 Refer to the description of uart_xoff_threshold. (R/W)

UART_XON_THRESHOLD_H2 Refer to the description of uart_xon_threshold. (R/W)

UART_RX_TOUT_THRHD_H3 Refer to the description of rx_tout_thrhd. (R/W)

UART_RX_FLOW_THRHD_H3 Refer to the description of rx_flow_thrhd. (R/W)

UART_TX_SIZE This register is used to configure the amount of memory allocated to the transmit-

FIFO. The default number is 128 bytes. (R/W)

UART_RX_SIZE This register is used to configure the amount of memory allocated to the receive-

FIFO. The default number is 128 bytes. (R/W)

UART_MEM_PD Set this bit to power down the memory. When the reg_mem_pd register is set to 1

for all UART controllers, Memory will enter the low-power mode. (R/W)

Espressif Systems 215 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.24: UART_MEM_CNT_STATUS_REG (0x64)

(re
se

rve
d)

0 0

31 6

UART_
TX

_M
EM

_C
NT

0 0 0

5 3

UART_
RX_

M
EM

_C
NT

0 0 0

2 0

Reset

UART_TX_MEM_CNT Refer to the description of txfifo_cnt. (RO)

UART_RX_MEM_CNT Refer to the description of rxfifo_cnt. (RO)

Register 9.25: UART_POSPULSE_REG (0x68)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UART_
POSEDGE_M

IN
_C

NT

0x0FFFFF

19 0

Reset

UART_POSEDGE_MIN_CNT This register stores the count of RxD positive edges. It is used in the

autobaud detection process. (RO)

Register 9.26: UART_NEGPULSE_REG (0x6c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UART_
NEGEDGE_M

IN
_C

NT

0x0FFFFF

19 0

Reset

UART_NEGEDGE_MIN_CNT This register stores the count of RxD negative edges. It is used in the

autobaud detection process. (RO)

Espressif Systems 216 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.27: UHCI_CONF0_REG (0x0)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

UHCI_E
NCODE_C

RC_E
N

1

21

UHCI_L
EN_E

OF_
EN

1

20

UHCI_U
ART_

ID
LE

_E
OF_

EN

0

19

UHCI_C
RC_R

EC_E
N

1

18

UHCI_H
EAD_E

N

1

17

UHCI_S
EPER_E

N

1

16

(re
se

rve
d)

0 0 0 0

15 12

UHCI_U
ART2

_C
E

0

11

UHCI_U
ART1

_C
E

0

10

UHCI_U
ART0

_C
E

0

9

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

17 9

Reset

UHCI_ENCODE_CRC_EN Reserved. Please initialize it to 0. (R/W)

UHCI_LEN_EOF_EN Reserved. Please initialize it to 0. (R/W)

UHCI_UART_IDLE_EOF_EN Reserved. Please initialize it to 0. (R/W)

UHCI_CRC_REC_EN Reserved. Please initialize it to 0. (R/W)

UHCI_HEAD_EN Reserved. Please initialize it to 0. (R/W)

UHCI_SEPER_EN Set this bit to use a special char and separate the data frame. (R/W)

UHCI_UART2_CE Set this bit to use UART2 and transmit or receive data. (R/W)

UHCI_UART1_CE Set this bit to use UART1 and transmit or receive data. (R/W)

UHCI_UART0_CE Set this bit to use UART and transmit or receive data. (R/W)

Espressif Systems 217 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.28: UHCI_INT_RAW_REG (0x4)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

UHCI_O
UT_

TO
TA

L_
EOF_

IN
T_

RAW

0

13

UHCI_O
UTL

IN
K_E

OF_
ERR_IN

T_
RAW

0

12

UHCI_I
N_D

SCR_E
M

PTY
_IN

T_
RAW

0

11

UHCI_O
UT_

DSCR_E
RR_IN

T_
RAW

0

10

UHCI_I
N_D

SCR_E
RR_IN

T_
RAW

0

9

UHCI_O
UT_

EOF_
IN

T_
RAW

0

8

UHCI_O
UT_

DONE_IN
T_

RAW

0

7

UHCI_I
N_E

RR_E
OF_

IN
T_

RAW

0

6

UHCI_I
N_S

UC_E
OF_

IN
T_

RAW

0

5

UHCI_I
N_D

ONE_IN
T_

RAW

0

4

UHCI_T
X_

HUNG_IN
T_

RAW

0

3

UHCI_R
X_

HUNG_IN
T_

RAW

0

2

UHCI_T
X_

STA
RT_

IN
T_

RAW

0

1

UHCI_R
X_

STA
RT_

IN
T_

RAW

0

0

Reset

UHCI_OUT_TOTAL_EOF_INT_RAW The raw interrupt status bit for the

UHCI_OUT_TOTAL_EOF_INT interrupt. (RO)

UHCI_OUTLINK_EOF_ERR_INT_RAW The raw interrupt status bit for the

UHCI_OUTLINK_EOF_ERR_INT interrupt. (RO)

UHCI_IN_DSCR_EMPTY_INT_RAW The raw interrupt status bit for the

UHCI_IN_DSCR_EMPTY_INT interrupt. (RO)

UHCI_OUT_DSCR_ERR_INT_RAW The raw interrupt status bit for the UHCI_OUT_DSCR_ERR_INT

interrupt. (RO)

UHCI_IN_DSCR_ERR_INT_RAW The raw interrupt status bit for the UHCI_IN_DSCR_ERR_INT in-

terrupt. (RO)

UHCI_OUT_EOF_INT_RAW The raw interrupt status bit for the UHCI_OUT_EOF_INT interrupt. (RO)

UHCI_OUT_DONE_INT_RAW The raw interrupt status bit for the UHCI_OUT_DONE_INT interrupt.

(RO)

UHCI_IN_ERR_EOF_INT_RAW The raw interrupt status bit for the UHCI_IN_ERR_EOF_INT interrupt.

(RO)

UHCI_IN_SUC_EOF_INT_RAW The raw interrupt status bit for the UHCI_IN_SUC_EOF_INT inter-

rupt. (RO)

UHCI_IN_DONE_INT_RAW The raw interrupt status bit for the UHCI_IN_DONE_INT interrupt. (RO)

UHCI_TX_HUNG_INT_RAW The raw interrupt status bit for the UHCI_TX_HUNG_INT interrupt. (RO)

UHCI_RX_HUNG_INT_RAW The raw interrupt status bit for the UHCI_RX_HUNG_INT interrupt. (RO)

UHCI_TX_START_INT_RAW The raw interrupt status bit for the UHCI_TX_START_INT interrupt. (RO)

UHCI_RX_START_INT_RAW The raw interrupt status bit for the UHCI_RX_START_INT interrupt.

(RO)

Espressif Systems 218 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.29: UHCI_INT_ST_REG (0x8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UHCI_D
M

A_IN
FIF

O_F
ULL

_W
M

_IN
T_

ST

0

16

UHCI_S
END_A

_R
EG_Q

_IN
T_

ST

0

15

UHCI_S
END_S

_R
EG_Q

_IN
T_

ST

0

14

UHCI_O
UT_

TO
TA

L_
EOF_

IN
T_

ST

0

13

UHCI_O
UTL

IN
K_E

OF_
ERR_IN

T_
ST

0

12

UHCI_I
N_D

SCR_E
M

PTY
_IN

T_
ST

0

11

UHCI_O
UT_

DSCR_E
RR_IN

T_
ST

0

10

UHCI_I
N_D

SCR_E
RR_IN

T_
ST

0

9

UHCI_O
UT_

EOF_
IN

T_
ST

0

8

UHCI_O
UT_

DONE_IN
T_

ST

0

7

UHCI_I
N_E

RR_E
OF_

IN
T_

ST

0

6

UHCI_I
N_S

UC_E
OF_

IN
T_

ST

0

5

UHCI_I
N_D

ONE_IN
T_

ST

0

4

UHCI_T
X_

HUNG_IN
T_

ST

0

3

UHCI_R
X_

HUNG_IN
T_

ST

0

2

UHCI_T
X_

STA
RT_

IN
T_

ST

0

1

UHCI_R
X_

STA
RT_

IN
T_

ST

0

0

Reset

UHCI_SEND_A_REG_Q_INT_ST The masked interrupt status bit for the UHCI_SEND_A_REG_Q_INT in-

terrupt. (RO)

UHCI_SEND_S_REG_Q_INT_ST The masked interrupt status bit for the UHCI_SEND_S_REG_Q_INT in-

terrupt. (RO)

UHCI_OUT_TOTAL_EOF_INT_ST The masked interrupt status bit for the UHCI_OUT_TOTAL_EOF_INT in-

terrupt. (RO)

UHCI_OUTLINK_EOF_ERR_INT_ST The masked interrupt status bit for the

UHCI_OUTLINK_EOF_ERR_INT interrupt. (RO)

UHCI_IN_DSCR_EMPTY_INT_ST The masked interrupt status bit for the UHCI_IN_DSCR_EMPTY_INT in-

terrupt. (RO)

UHCI_OUT_DSCR_ERR_INT_ST The masked interrupt status bit for the UHCI_OUT_DSCR_ERR_INT in-

terrupt. (RO)

UHCI_IN_DSCR_ERR_INT_ST The masked interrupt status bit for the UHCI_IN_DSCR_ERR_INT interrupt.

(RO)

UHCI_OUT_EOF_INT_ST The masked interrupt status bit for the UHCI_OUT_EOF_INT interrupt. (RO)

UHCI_OUT_DONE_INT_ST The masked interrupt status bit for the UHCI_OUT_DONE_INT interrupt. (RO)

UHCI_IN_ERR_EOF_INT_ST The masked interrupt status bit for the UHCI_IN_ERR_EOF_INT interrupt.

(RO)

UHCI_IN_SUC_EOF_INT_ST The masked interrupt status bit for the UHCI_IN_SUC_EOF_INT interrupt.

(RO)

UHCI_IN_DONE_INT_ST The masked interrupt status bit for the UHCI_IN_DONE_INT interrupt. (RO)

UHCI_TX_HUNG_INT_ST The masked interrupt status bit for the UHCI_TX_HUNG_INT interrupt. (RO)

UHCI_RX_HUNG_INT_ST The masked interrupt status bit for the UHCI_RX_HUNG_INT interrupt. (RO)

UHCI_TX_START_INT_ST The masked interrupt status bit for the UHCI_TX_START_INT interrupt. (RO)

UHCI_RX_START_INT_ST The masked interrupt status bit for the UHCI_RX_START_INT interrupt. (RO)

Espressif Systems 219 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.30: UHCI_INT_ENA_REG (0xC)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UHCI_D
M

A_IN
FIF

O_F
ULL

_W
M

_IN
T_

ENA

0

16

UHCI_S
END_A

_R
EG_Q

_IN
T_

ENA

0

15

UHCI_S
END_S

_R
EG_Q

_IN
T_

ENA

0

14

UHCI_O
UT_

TO
TA

L_
EOF_

IN
T_

ENA

0

13

UHCI_O
UTL

IN
K_E

OF_
ERR_IN

T_
ENA

0

12

UHCI_I
N_D

SCR_E
M

PTY
_IN

T_
ENA

0

11

UHCI_O
UT_

DSCR_E
RR_IN

T_
ENA

0

10

UHCI_I
N_D

SCR_E
RR_IN

T_
ENA

0

9

UHCI_O
UT_

EOF_
IN

T_
ENA

0

8

UHCI_O
UT_

DONE_IN
T_

ENA

0

7

UHCI_I
N_E

RR_E
OF_

IN
T_

ENA

0

6

UHCI_I
N_S

UC_E
OF_

IN
T_

ENA

0

5

UHCI_I
N_D

ONE_IN
T_

ENA

0

4

UHCI_T
X_

HUNG_IN
T_

ENA

0

3

UHCI_R
X_

HUNG_IN
T_

ENA

0

2

UHCI_T
X_

STA
RT_

IN
T_

ENA

0

1

UHCI_R
X_

STA
RT_

IN
T_

ENA

0

0

Reset

UHCI_SEND_A_REG_Q_INT_ENA The interrupt enable bit for the UHCI_SEND_A_REG_Q_INT interrupt.

(R/W)

UHCI_SEND_S_REG_Q_INT_ENA The interrupt enable bit for the UHCI_SEND_S_REG_Q_INT interrupt.

(R/W)

UHCI_OUT_TOTAL_EOF_INT_ENA The interrupt enable bit for the UHCI_OUT_TOTAL_EOF_INT interrupt.

(R/W)

UHCI_OUTLINK_EOF_ERR_INT_ENA The interrupt enable bit for the UHCI_OUTLINK_EOF_ERR_INT in-

terrupt. (R/W)

UHCI_IN_DSCR_EMPTY_INT_ENA The interrupt enable bit for the UHCI_IN_DSCR_EMPTY_INT interrupt.

(R/W)

UHCI_OUT_DSCR_ERR_INT_ENA The interrupt enable bit for the UHCI_OUT_DSCR_ERR_INT interrupt.

(R/W)

UHCI_IN_DSCR_ERR_INT_ENA The interrupt enable bit for the UHCI_IN_DSCR_ERR_INT interrupt. (R/W)

UHCI_OUT_EOF_INT_ENA The interrupt enable bit for the UHCI_OUT_EOF_INT interrupt. (R/W)

UHCI_OUT_DONE_INT_ENA The interrupt enable bit for the UHCI_OUT_DONE_INT interrupt. (R/W)

UHCI_IN_ERR_EOF_INT_ENA The interrupt enable bit for the UHCI_IN_ERR_EOF_INT interrupt. (R/W)

UHCI_IN_SUC_EOF_INT_ENA The interrupt enable bit for the UHCI_IN_SUC_EOF_INT interrupt. (R/W)

UHCI_IN_DONE_INT_ENA The interrupt enable bit for the UHCI_IN_DONE_INT interrupt. (R/W)

UHCI_TX_HUNG_INT_ENA The interrupt enable bit for the UHCI_TX_HUNG_INT interrupt. (R/W)

UHCI_RX_HUNG_INT_ENA The interrupt enable bit for the UHCI_RX_HUNG_INT interrupt. (R/W)

UHCI_TX_START_INT_ENA The interrupt enable bit for the UHCI_TX_START_INT interrupt. (R/W)

UHCI_RX_START_INT_ENA The interrupt enable bit for the UHCI_RX_START_INT interrupt. (R/W)

Espressif Systems 220 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.31: UHCI_INT_CLR_REG (0x10)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UHCI_D
M

A_IN
FIF

O_F
ULL

_W
M

_IN
T_

CLR

0

16

UHCI_S
END_A

_R
EG_Q

_IN
T_

CLR

0

15

UHCI_S
END_S

_R
EG_Q

_IN
T_

CLR

0

14

UHCI_O
UT_

TO
TA

L_
EOF_

IN
T_

CLR

0

13

UHCI_O
UTL

IN
K_E

OF_
ERR_IN

T_
CLR

0

12

UHCI_I
N_D

SCR_E
M

PTY
_IN

T_
CLR

0

11

UHCI_O
UT_

DSCR_E
RR_IN

T_
CLR

0

10

UHCI_I
N_D

SCR_E
RR_IN

T_
CLR

0

9

UHCI_O
UT_

EOF_
IN

T_
CLR

0

8

UHCI_O
UT_

DONE_IN
T_

CLR

0

7

UHCI_I
N_E

RR_E
OF_

IN
T_

CLR

0

6

UHCI_I
N_S

UC_E
OF_

IN
T_

CLR

0

5

UHCI_I
N_D

ONE_IN
T_

CLR

0

4

UHCI_T
X_

HUNG_IN
T_

CLR

0

3

UHCI_R
X_

HUNG_IN
T_

CLR

0

2

UHCI_T
X_

STA
RT_

IN
T_

CLR

0

1

UHCI_R
X_

STA
RT_

IN
T_

CLR

0

0

Reset

UHCI_SEND_A_REG_Q_INT_CLR Set this bit to clear the UHCI_SEND_A_REG_Q_INT interrupt.

(WO)

UHCI_SEND_S_REG_Q_INT_CLR Set this bit to clear the UHCI_SEND_S_REG_Q_INT interrupt.

(WO)

UHCI_OUT_TOTAL_EOF_INT_CLR Set this bit to clear the UHCI_OUT_TOTAL_EOF_INT interrupt.

(WO)

UHCI_OUTLINK_EOF_ERR_INT_CLR Set this bit to clear the UHCI_OUTLINK_EOF_ERR_INT inter-

rupt. (WO)

UHCI_IN_DSCR_EMPTY_INT_CLR Set this bit to clear the UHCI_IN_DSCR_EMPTY_INT interrupt.

(WO)

UHCI_OUT_DSCR_ERR_INT_CLR Set this bit to clear the UHCI_OUT_DSCR_ERR_INT interrupt.

(WO)

UHCI_IN_DSCR_ERR_INT_CLR Set this bit to clear the UHCI_IN_DSCR_ERR_INT interrupt. (WO)

UHCI_OUT_EOF_INT_CLR Set this bit to clear the UHCI_OUT_EOF_INT interrupt. (WO)

UHCI_OUT_DONE_INT_CLR Set this bit to clear the UHCI_OUT_DONE_INT interrupt. (WO)

UHCI_IN_ERR_EOF_INT_CLR Set this bit to clear the UHCI_IN_ERR_EOF_INT interrupt. (WO)

UHCI_IN_SUC_EOF_INT_CLR Set this bit to clear the UHCI_IN_SUC_EOF_INT interrupt. (WO)

UHCI_IN_DONE_INT_CLR Set this bit to clear the UHCI_IN_DONE_INT interrupt. (WO)

UHCI_TX_HUNG_INT_CLR Set this bit to clear the UHCI_TX_HUNG_INT interrupt. (WO)

UHCI_RX_HUNG_INT_CLR Set this bit to clear the UHCI_RX_HUNG_INT interrupt. (WO)

UHCI_TX_START_INT_CLR Set this bit to clear the UHCI_TX_START_INT interrupt. (WO)

UHCI_RX_START_INT_CLR Set this bit to clear the UHCI_RX_START_INT interrupt. (WO)

Espressif Systems 221 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.32: UHCI_DMA_OUT_STATUS_REG (0x14)

(re
se

rve
d)

0 0

31 2

UHCI_O
UT_

EM
PTY

1

1

UHCI_O
UT_

FU
LL

0

0

Reset

UHCI_OUT_EMPTY 1: DMA inlink descriptor’s FIFO is empty. (RO)

UHCI_OUT_FULL 1: DMA outlink descriptor’s FIFO is full. (RO)

Register 9.33: UHCI_DMA_OUT_PUSH_REG (0x18)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UHCI_O
UTF

IFO
_P

USH

0

16

(re
se

rve
d)

0 0 0 0 0 0 0

15 9

UHCI_O
UTF

IFO
_W

DAT
A

0x000

8 0

Reset

UHCI_OUTFIFO_PUSH Set this bit to push data into DMA FIFO. (R/W)

UHCI_OUTFIFO_WDATA This is the data that need to be pushed into DMA FIFO. (R/W)

Register 9.34: UHCI_DMA_IN_POP_REG (0x20)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UHCI_I
NFIF

O_P
OP

0

16

(re
se

rve
d)

0 0 0 0

15 12

UHCI_I
NFIF

O_R
DAT

A

0x0000

11 0

Reset

UHCI_INFIFO_POP Set this bit to pop data from DMA FIFO. (R/W)

UHCI_INFIFO_RDATA This register stores the data popping from DMA FIFO. (RO)

Espressif Systems 222 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.35: UHCI_DMA_OUT_LINK_REG (0x24)

UHCI_O
UTL

IN
K_P

ARK

0

31

UHCI_O
UTL

IN
K_R

ESTA
RT

0

30

UHCI_O
UTL

IN
K_S

TA
RT

0

29

UHCI_O
UTL

IN
K_S

TO
P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

UHCI_O
UTL

IN
K_A

DDR

0x000000

19 0

Reset

UHCI_OUTLINK_PARK 1: the outlink descriptor’s FSM is in idle state; 0: the outlink descriptor’s FSM

is working. (RO)

UHCI_OUTLINK_RESTART Set this bit to restart the outlink descriptor from the last address. (R/W)

UHCI_OUTLINK_START Set this bit to start a new outlink descriptor. (R/W)

UHCI_OUTLINK_STOP Set this bit to stop dealing with the outlink descriptor. (R/W)

UHCI_OUTLINK_ADDR This register stores the least significant 20 bits of the first outlink descriptor’s

address. (R/W)

Register 9.36: UHCI_DMA_IN_LINK_REG (0x28)

UHCI_I
NLIN

K_P
ARK

0

31

UHCI_I
NLIN

K_R
ESTA

RT

0

30

UHCI_I
NLIN

K_S
TA

RT

0

29

UHCI_I
NLIN

K_S
TO

P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

UHCI_I
NLIN

K_A
DDR

0x000000

19 0

Reset

UHCI_INLINK_PARK 1: the inlink descriptor’s FSM is in idle state; 0: the inlink descriptor’s FSM is

working. (RO)

UHCI_INLINK_RESTART Set this bit to mount new inlink descriptors. (R/W)

UHCI_INLINK_START Set this bit to start dealing with the inlink descriptors. (R/W)

UHCI_INLINK_STOP Set this bit to stop dealing with the inlink descriptors. (R/W)

UHCI_INLINK_ADDR This register stores the 20 least significant bits of the first inlink descriptor’s

address. (R/W)

Espressif Systems 223 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.37: UHCI_CONF1_REG (0x2C)

(re
se

rve
d)

0 0

31 6

UHCI_T
X_

ACK_N
UM

_R
E

1

5

UHCI_T
X_

CHECK_S
UM

_R
E

1

4

(re
se

rve
d)

0 0

3 2

UHCI_C
HECK_S

EQ_E
N

1

1

UHCI_C
HECK_S

UM
_E

N

1

0

Reset

UHCI_TX_ACK_NUM_RE Reserved. Please initialize to 0. (R/W)

UHCI_TX_CHECK_SUM_RE Reserved. Please initialize to 0. (R/W)

UHCI_CHECK_SEQ_EN Reserved. Please initialize to 0. (R/W)

UHCI_CHECK_SUM_EN Reserved. Please initialize to 0. (R/W)

Register 9.38: UHCI_DMA_OUT_EOF_DES_ADDR_REG (0x38)

0x000000000

31 0

Reset

UHCI_DMA_OUT_EOF_DES_ADDR_REG This register stores the address of the outlink descriptor

when the EOF bit in this descriptor is 1. (RO)

Register 9.39: UHCI_DMA_IN_SUC_EOF_DES_ADDR_REG (0x3C)

0x000000000

31 0

Reset

UHCI_DMA_IN_SUC_EOF_DES_ADDR_REG This register stores the address of the inlink descriptor

when the EOF bit in this descriptor is 1. (RO)

Register 9.40: UHCI_DMA_IN_ERR_EOF_DES_ADDR_REG (0x40)

0x000000000

31 0

Reset

UHCI_DMA_IN_ERR_EOF_DES_ADDR_REG This register stores the address of the inlink descriptor

when there are some errors in this descriptor. (RO)

Espressif Systems 224 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.41: UHCI_DMA_OUT_EOF_BFR_DES_ADDR_REG (0x44)

0x000000000

31 0

Reset

UHCI_DMA_OUT_EOF_BFR_DES_ADDR_REG This register stores the address of the outlink de-

scriptor when there are some errors in this descriptor. (RO)

Register 9.42: UHCI_DMA_IN_DSCR_REG (0x4C)

0 0

31 0

Reset

UHCI_DMA_IN_DSCR_REG The address of the current inlink descriptor x. (RO)

Register 9.43: UHCI_DMA_IN_DSCR_BF0_REG (0x50)

0 0

31 0

Reset

UHCI_DMA_IN_DSCR_BF0_REG The address of the last inlink descriptor x-1. (RO)

Register 9.44: UHCI_DMA_IN_DSCR_BF1_REG (0x54)

0 0

31 0

Reset

UHCI_DMA_IN_DSCR_BF1_REG The address of the second-to-last inlink descriptor x-2. (RO)

Register 9.45: UHCI_DMA_OUT_DSCR_REG (0x58)

0 0

31 0

Reset

UHCI_DMA_OUT_DSCR_REG The address of the current outlink descriptor y. (RO)

Register 9.46: UHCI_DMA_OUT_DSCR_BF0_REG (0x5C)

0 0

31 0

Reset

UHCI_DMA_OUT_DSCR_BF0_REG The address of the last outlink descriptor y-1. (RO)

Espressif Systems 225 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.47: UHCI_DMA_OUT_DSCR_BF1_REG (0x60)

0 0

31 0

Reset

UHCI_DMA_OUT_DSCR_BF1_REG The address of the second-to-last outlink descriptor y-2. (RO)

Register 9.48: UHCI_ESCAPE_CONF_REG (0x64)

(re
se

rve
d)

0 0

31 8

UHCI_R
X_

13
_E

SC_E
N

0

7

UHCI_R
X_

11
_E

SC_E
N

0

6

UHCI_R
X_

DB_E
SC_E

N

1

5

UHCI_R
X_

C0_
ESC_E

N

1

4

UHCI_T
X_

13
_E

SC_E
N

0

3

UHCI_T
X_

11
_E

SC_E
N

0

2

UHCI_T
X_

DB_E
SC_E

N

1

1

UHCI_T
X_

C0_
ESC_E

N

1

0

Reset

UHCI_RX_13_ESC_EN Set this bit to enable replacing flow control char 0x13, when DMA sends data.

(R/W)

UHCI_RX_11_ESC_EN Set this bit to enable replacing flow control char 0x11, when DMA sends data.

(R/W)

UHCI_RX_DB_ESC_EN Set this bit to enable replacing 0xdb char, when DMA sends data. (R/W)

UHCI_RX_C0_ESC_EN Set this bit to enable replacing 0xc0 char, when DMA sends data. (R/W)

UHCI_TX_13_ESC_EN Set this bit to enable decoding flow control char 0x13, when DMA receives

data. (R/W)

UHCI_TX_11_ESC_EN Set this bit to enable decoding flow control char 0x11, when DMA receives

data. (R/W)

UHCI_TX_DB_ESC_EN Set this bit to enable decoding 0xdb char, when DMA receives data. (R/W)

UHCI_TX_C0_ESC_EN Set this bit to enable decoding 0xc0 char, when DMA receives data. (R/W)

Espressif Systems 226 ESP32 Technical Reference Manual V1.8

9. UART CONTROLLERS

Register 9.49: UHCI_HUNG_CONF_REG (0x68)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UHCI_R
XF

IFO
_T

IM
EOUT_

ENA

1

23

UHCI_R
XF

IFO
_T

IM
EOUT_

SHIFT

0 0 0

22 20

UHCI_R
XF

IFO
_T

IM
EOUT

0x010

19 12

UHCI_T
XF

IFO
_T

IM
EOUT_

ENA

1

11

UHCI_T
XF

IFO
_T

IM
EOUT_

SHIFT

0 0 0

10 8

UHCI_T
XF

IFO
_T

IM
EOUT

0x010

7 0

Reset

UHCI_RXFIFO_TIMEOUT_ENA This is the enable bit for DMA send-data timeout. (R/W)

UHCI_RXFIFO_TIMEOUT_SHIFT The tick count is cleared when its value is equal to or greater than

(17’d8000»reg_rxfifo_timeout_shift). (R/W)

UHCI_RXFIFO_TIMEOUT This register stores the timeout value. When DMA takes more time to read

data from RAM than what this register indicates, it will produce the UHCI_RX_HUNG_INT interrupt.

(R/W)

UHCI_TXFIFO_TIMEOUT_ENA The enable bit for Tx FIFO receive-data timeout (R/W)

UHCI_TXFIFO_TIMEOUT_SHIFT The tick count is cleared when its value is equal to or greater than

(17’d8000»reg_txfifo_timeout_shift). (R/W)

UHCI_TXFIFO_TIMEOUT This register stores the timeout value. When DMA takes more time to

receive data than what this register indicates, it will produce the UHCI_TX_HUNG_INT interrupt.

(R/W)

Register 9.50: UHCI_ESC_CONFn_REG (n: 0-3) (0xB0+4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UHCI_E
SC_S

EQ2_
CHAR1

0x0DF

23 16

UHCI_E
SC_S

EQ2_
CHAR0

0x0DB

15 8

UHCI_E
SC_S

EQ2

0x013

7 0

Reset

UHCI_ESC_SEQ2_CHAR1 This register stores the second char used to replace the reg_esc_seq2 in

data. (R/W)

UHCI_ESC_SEQ2_CHAR0 This register stores the first char used to replace the reg_esc_seq2 in

data. (R/W)

UHCI_ESC_SEQ2 This register stores the flow_control char to turn off the flow_control. (R/W)

Espressif Systems 227 ESP32 Technical Reference Manual V1.8

10. LED_PWM

10. LED_PWM

10.1 Introduction

The LED_PWM controller is primarily designed to control the intensity of LEDs, although it can be used to

generate PWM signals for other purposes as well. It has 16 channels which can generate independent

waveforms that can be used to drive RGB LED devices. For maximum flexibility, the high-speed as well as the

low-speed channels can be driven from one of four high-speed/low-speed timers. The PWM controller also has

the ability to automatically increase or decrease the duty cycle gradually, allowing for fades without any processor

interference. To increase resolution, the LED_PWM controller is also able to dither between two values, when a

fractional PWM value is configured.

The LED_PWM controller has eight high-speed and eight low-speed PWM generators. In this document, they will

be referred to as hschn and lschn, respectively. These channels can be driven from four timers which will be

indicated by h_timerx and l_timerx.

10.2 Functional Description

10.2.1 Architecture

Figure 59: LED_PWM Architecture

Figure 59 shows the architecture of the LED_PWM controller. As can be seen in the figure, the LED_PWM

controller contains eight high-speed and eight low-speed channels. There are four high-speed clock modules for

the high-speed channels, from which one h_timerx can be selected. There are also four low-speed clock

modules for the low-speed channels, from which one l_timerx can be selected.

Figure 60: LED_PWM High-speed Channel Diagram

Espressif Systems 228 ESP32 Technical Reference Manual V1.8

10. LED_PWM

Figure 60 illustrates a PWM channel with its selected timer; in this instance a high-speed channel and associated

high-speed timer.

10.2.2 Timers

A high-speed timer consists of a multiplexer to select one of two clock sources: either REF_TICK or APB_CLK.

For more information on the clock sources, please see Chapter Reset And Clock. The input clock is divided

down by a divider first. The division factor is specified by LEDC_DIV_NUM_HSTIMERx which contains a fixed

point number: the highest 10 bits represent the integer portion, while the lowest eight bits contain the fractional

portion.

The divided clock signal is then fed into a 20-bit counter. This counter will count up to the value specified in

LEDC_HSTIMERx_LIM. An overflow interrupt will be generated once the counting value reaches this limit, at

which point the counter restarts counting from zero. It is also possible to reset, suspend, and read the values of

the counter by software.

The output signal of the timer is the 20-bit value generated by the counter. The cycle period of this signal defines

the frequency of the signals of any PWM channels connected to this timer. This frequency depends on both the

division factor of the divider, as well as the range of the counter:

fsig_out =
fREF_TICK · (!LEDC_TICK_SEL_HSTIMERx) + fAPB_CLK · LEDC_TICK_SEL_HSTIMERx

LEDC_DIV_NUM_HSTIMERx · 2LEDC_HSTIMERx_LIM

The low-speed timers l_timerx on the low-speed channel differ from the high-speed timers h_timerx in two

aspects:

1. Where the high-speed timer clock source can be clocked from REF_TICK or APB_CLK, the low speed

timers are sourced from either REF_TICK or SLOW_CLOCK. The SLOW_CLOCK source can be either

APB_CLK (80 MHz) or 8 MHz, and can be selected using LEDC_APB_CLK_SEL.

2. The high-speed counter and divider are glitch-free, which means that if the software modifies the maximum

counter or divisor value, the update will come into effect after the next overflow interrupt. In contrast, the

low-speed counter and divider will update these values only when LEDC_LSTIMERx_PARA_UP is set.

10.2.3 Channels

A channel takes the 20-bit value from the counter of the selected high-speed timer and compares it to a set of

two values in order to set the channel output. The first value it is compared to is the content of

LEDC_HPOINT_HSCHn; if these two match, the output will be latched high. The second value is the sum of

LEDC_HPOINT_HSCHn and LEDC_DUTY_HSCHn[24..4]. When this value is reached, the output is latched low.

By using these two values, the relative phase and the duty cycle of the PWM output can be set. Figure 61

illustrates this.

Figure 61: LED PWM Output Signal Diagram

Espressif Systems 229 ESP32 Technical Reference Manual V1.8

10. LED_PWM

LEDC_DUTY_HSCHn is a fixed-point register with four fractional bits. As mentioned before, when

LEDC_DUTY_HSCHn[24..4] is used in the PWM calculation directly, LEDC_DUTY_HSCHn[3..0] can be used to

dither the output. If this value is non-zero, with a statistical chance of LEDC_DUTY_HSCHn[3..0]/16, the actual

PWM pulse will be one cycle longer. This effectively increases the resolution of the PWM generator to 24 bits, but

at the cost of a slight jitter in the duty cycle.

The channels also have the ability to automatically fade from one duty cycle value to another. This feature is

enabled by setting LEDC_DUTY_START_HSCHn. When this bit is set, the PWM controller will automatically

increment or decrement the value in LEDC_DUTY_HSCHn, depending on whether the bit

LEDC_DUTY_INC_HSCHn is set or cleared, respectively. The speed the duty cycle changes is defined as such:

every time the LEDC_DUTY_CYCLE_HSCHn cycles, the content of LEDC_DUTY_SCALE_HSCHn is added to or

subtracted from LEDC_DUTY_HSCHn[24..4]. The length of the fade can be limited by setting

LEDC_DUTY_NUM_HSCHn: the fade will only last that number of cycles before finishing. A finished fade also

generates an interrupt.

Figure 62: Output Signal Diagram of Gradient Duty Cycle

Figure 62 is an illustration of this. In this configuration, LEDC_DUTY_NUM_HSCHn_R increases by

LEDC_DUTY_SCALE_HSCHn for every LEDC_DUTY_CYCLE_HSCHn clock cycles, which is reflected in the duty

cycle of the output signal.

10.2.4 Interrupts

• LEDC_DUTY_CHNG_END_LSCHn_INT: Triggered when a fade on a low-speed channel has finished.

• LEDC_DUTY_CHNG_END_HSCHn_INT: Triggered when a fade on a high-speed channel has finished.

• LEDC_HS_TIMERx_OVF_INT: Triggered when a high-speed timer has reached its maximum counter value.

• LEDC_LS_TIMERx_OVF_INT: Triggered when a low-speed timer has reached its maximum counter value.

10.3 Register Summary

Name Description Address Access

Configuration registers

LEDC_CONF_REG Global ledc configuration register 0x3FF59190 R/W

LEDC_HSCH0_CONF0_REG Configuration register 0 for high-speed channel 0 0x3FF59000 R/W

LEDC_HSCH1_CONF0_REG Configuration register 0 for high-speed channel 1 0x3FF59014 R/W

LEDC_HSCH2_CONF0_REG Configuration register 0 for high-speed channel 2 0x3FF59028 R/W

LEDC_HSCH3_CONF0_REG Configuration register 0 for high-speed channel 3 0x3FF5903C R/W

LEDC_HSCH4_CONF0_REG Configuration register 0 for high-speed channel 4 0x3FF59050 R/W

Espressif Systems 230 ESP32 Technical Reference Manual V1.8

10. LED_PWM

Name Description Address Access

LEDC_HSCH5_CONF0_REG Configuration register 0 for high-speed channel 5 0x3FF59064 R/W

LEDC_HSCH6_CONF0_REG Configuration register 0 for high-speed channel 6 0x3FF59078 R/W

LEDC_HSCH7_CONF0_REG Configuration register 0 for high-speed channel 7 0x3FF5908C R/W

LEDC_HSCH0_CONF1_REG Configuration register 1 for high-speed channel 0 0x3FF5900C R/W

LEDC_HSCH1_CONF1_REG Configuration register 1 for high-speed channel 1 0x3FF59020 R/W

LEDC_HSCH2_CONF1_REG Configuration register 1 for high-speed channel 2 0x3FF59034 R/W

LEDC_HSCH3_CONF1_REG Configuration register 1 for high-speed channel 3 0x3FF59048 R/W

LEDC_HSCH4_CONF1_REG Configuration register 1 for high-speed channel 4 0x3FF5905C R/W

LEDC_HSCH5_CONF1_REG Configuration register 1 for high-speed channel 5 0x3FF59070 R/W

LEDC_HSCH6_CONF1_REG Configuration register 1 for high-speed channel 6 0x3FF59084 R/W

LEDC_HSCH7_CONF1_REG Configuration register 1 for high-speed channel 7 0x3FF59098 R/W

LEDC_LSCH0_CONF0_REG Configuration register 0 for low-speed channel 0 0x3FF590A0 R/W

LEDC_LSCH1_CONF0_REG Configuration register 0 for low-speed channel 1 0x3FF590B4 R/W

LEDC_LSCH2_CONF0_REG Configuration register 0 for low-speed channel 2 0x3FF590C8 R/W

LEDC_LSCH3_CONF0_REG Configuration register 0 for low-speed channel 3 0x3FF590DC R/W

LEDC_LSCH4_CONF0_REG Configuration register 0 for low-speed channel 4 0x3FF590F0 R/W

LEDC_LSCH5_CONF0_REG Configuration register 0 for low-speed channel 5 0x3FF59104 R/W

LEDC_LSCH6_CONF0_REG Configuration register 0 for low-speed channel 6 0x3FF59118 R/W

LEDC_LSCH7_CONF0_REG Configuration register 0 for low-speed channel 7 0x3FF5912C R/W

LEDC_LSCH0_CONF1_REG Configuration register 1 for low-speed channel 0 0x3FF590AC R/W

LEDC_LSCH1_CONF1_REG Configuration register 1 for low-speed channel 1 0x3FF590C0 R/W

LEDC_LSCH2_CONF1_REG Configuration register 1 for low-speed channel 2 0x3FF590D4 R/W

LEDC_LSCH3_CONF1_REG Configuration register 1 for low-speed channel 3 0x3FF590E8 R/W

LEDC_LSCH4_CONF1_REG Configuration register 1 for low-speed channel 4 0x3FF590FC R/W

LEDC_LSCH5_CONF1_REG Configuration register 1 for low-speed channel 5 0x3FF59110 R/W

LEDC_LSCH6_CONF1_REG Configuration register 1 for low-speed channel 6 0x3FF59124 R/W

LEDC_LSCH7_CONF1_REG Configuration register 1 for low-speed channel 7 0x3FF59138 R/W

Duty-cycle registers

LEDC_HSCH0_DUTY_REG Initial duty cycle for high-speed channel 0 0x3FF59008 R/W

LEDC_HSCH1_DUTY_REG Initial duty cycle for high-speed channel 1 0x3FF5901C R/W

LEDC_HSCH2_DUTY_REG Initial duty cycle for high-speed channel 2 0x3FF59030 R/W

LEDC_HSCH3_DUTY_REG Initial duty cycle for high-speed channel 3 0x3FF59044 R/W

LEDC_HSCH4_DUTY_REG Initial duty cycle for high-speed channel 4 0x3FF59058 R/W

LEDC_HSCH5_DUTY_REG Initial duty cycle for high-speed channel 5 0x3FF5906C R/W

LEDC_HSCH6_DUTY_REG Initial duty cycle for high-speed channel 6 0x3FF59080 R/W

LEDC_HSCH7_DUTY_REG Initial duty cycle for high-speed channel 7 0x3FF59094 R/W

LEDC_HSCH0_DUTY_R_REG Current duty cycle for high-speed channel 0 0x3FF59010 RO

LEDC_HSCH1_DUTY_R_REG Current duty cycle for high-speed channel 1 0x3FF59024 RO

LEDC_HSCH2_DUTY_R_REG Current duty cycle for high-speed channel 2 0x3FF59038 RO

LEDC_HSCH3_DUTY_R_REG Current duty cycle for high-speed channel 3 0x3FF5904C RO

LEDC_HSCH4_DUTY_R_REG Current duty cycle for high-speed channel 4 0x3FF59060 RO

LEDC_HSCH5_DUTY_R_REG Current duty cycle for high-speed channel 5 0x3FF59074 RO

LEDC_HSCH6_DUTY_R_REG Current duty cycle for high-speed channel 6 0x3FF59088 RO

LEDC_HSCH7_DUTY_R_REG Current duty cycle for high-speed channel 7 0x3FF5909C RO

Espressif Systems 231 ESP32 Technical Reference Manual V1.8

10. LED_PWM

Name Description Address Access

LEDC_LSCH0_DUTY_REG Initial duty cycle for low-speed channel 0 0x3FF590A8 R/W

LEDC_LSCH1_DUTY_REG Initial duty cycle for low-speed channel 1 0x3FF590BC R/W

LEDC_LSCH2_DUTY_REG Initial duty cycle for low-speed channel 2 0x3FF590D0 R/W

LEDC_LSCH3_DUTY_REG Initial duty cycle for low-speed channel 3 0x3FF590E4 R/W

LEDC_LSCH4_DUTY_REG Initial duty cycle for low-speed channel 4 0x3FF590F8 R/W

LEDC_LSCH5_DUTY_REG Initial duty cycle for low-speed channel 5 0x3FF5910C R/W

LEDC_LSCH6_DUTY_REG Initial duty cycle for low-speed channel 6 0x3FF59120 R/W

LEDC_LSCH7_DUTY_REG Initial duty cycle for low-speed channel 7 0x3FF59134 R/W

LEDC_LSCH0_DUTY_R_REG Current duty cycle for low-speed channel 0 0x3FF590B0 RO

LEDC_LSCH1_DUTY_R_REG Current duty cycle for low-speed channel 1 0x3FF590C4 RO

LEDC_LSCH2_DUTY_R_REG Current duty cycle for low-speed channel 2 0x3FF590D8 RO

LEDC_LSCH3_DUTY_R_REG Current duty cycle for low-speed channel 3 0x3FF590EC RO

LEDC_LSCH4_DUTY_R_REG Current duty cycle for low-speed channel 4 0x3FF59100 RO

LEDC_LSCH5_DUTY_R_REG Current duty cycle for low-speed channel 5 0x3FF59114 RO

LEDC_LSCH6_DUTY_R_REG Current duty cycle for low-speed channel 6 0x3FF59128 RO

LEDC_LSCH7_DUTY_R_REG Current duty cycle for low-speed channel 7 0x3FF5913C RO

Timer registers

LEDC_HSTIMER0_CONF_REG High-speed timer 0 configuration 0x3FF59140 R/W

LEDC_HSTIMER1_CONF_REG High-speed timer 1 configuration 0x3FF59148 R/W

LEDC_HSTIMER2_CONF_REG High-speed timer 2 configuration 0x3FF59150 R/W

LEDC_HSTIMER3_CONF_REG High-speed timer 3 configuration 0x3FF59158 R/W

LEDC_HSTIMER0_VALUE_REG High-speed timer 0 current counter value 0x3FF59144 RO

LEDC_HSTIMER1_VALUE_REG High-speed timer 1 current counter value 0x3FF5914C RO

LEDC_HSTIMER2_VALUE_REG High-speed timer 2 current counter value 0x3FF59154 RO

LEDC_HSTIMER3_VALUE_REG High-speed timer 3 current counter value 0x3FF5915C RO

LEDC_LSTIMER0_CONF_REG Low-speed timer 0 configuration 0x3FF59160 R/W

LEDC_LSTIMER1_CONF_REG Low-speed timer 1 configuration 0x3FF59168 R/W

LEDC_LSTIMER2_CONF_REG Low-speed timer 2 configuration 0x3FF59170 R/W

LEDC_LSTIMER3_CONF_REG Low-speed timer 3 configuration 0x3FF59178 R/W

LEDC_LSTIMER0_VALUE_REG Low-speed timer 0 current counter value 0x3FF59164 RO

LEDC_LSTIMER1_VALUE_REG Low-speed timer 1 current counter value 0x3FF5916C RO

LEDC_LSTIMER2_VALUE_REG Low-speed timer 2 current counter value 0x3FF59174 RO

LEDC_LSTIMER3_VALUE_REG Low-speed timer 3 current counter value 0x3FF5917C RO

Interrupt registers

LEDC_INT_RAW_REG Raw interrupt status 0x3FF59180 RO

LEDC_INT_ST_REG Masked interrupt status 0x3FF59184 RO

LEDC_INT_ENA_REG Interrupt enable bits 0x3FF59188 R/W

LEDC_INT_CLR_REG Interrupt clear bits 0x3FF5918C WO

Espressif Systems 232 ESP32 Technical Reference Manual V1.8

10. LED_PWM

10.4 Registers

Register 10.1: LEDC_HSCHn_CONF0_REG (n: 0-7) (0x1C+0x10*n)

(re
se

rve
d)

0x00000000

31 4

LE
DC_ID

LE
_L

V_H
SCHn

0

3

LE
DC_S

IG
_O

UT_
EN_H

SCHn

0

2

LE
DC_T

IM
ER_S

EL_
HSCHn

0

1 0

Reset

LEDC_IDLE_LV_HSCHn This bit is used to control the output value when high-speed channel n is

inactive. (R/W)

LEDC_SIG_OUT_EN_HSCHn This is the output enable control bit for high-speed channel n. (R/W)

LEDC_TIMER_SEL_HSCHn There are four high-speed timers. These two bits are used to select one

of them for high-speed channel n: (R/W)

0: select hstimer0;

1: select hstimer1;

2: select hstimer2;

3: select hstimer3.

Register 10.2: LEDC_HSCHn_HPOINT_REG (n: 0-7) (0x20+0x10*n)

(re
se

rve
d)

0x0000

31 20

LE
DC_H

POIN
T_

HSCHn

0x000000

19 0

Reset

LEDC_HPOINT_HSCHn The output value changes to high when htimerx(x=[0,3]), selected by high-

speed channel n, has reached reg_hpoint_hschn[19:0]. (R/W)

Espressif Systems 233 ESP32 Technical Reference Manual V1.8

10. LED_PWM

Register 10.3: LEDC_HSCHn_DUTY_REG (n: 0-7) (0x24+0x10*n)

(re
se

rve
d)

0x00

31 25

LE
DC_D

UTY
_H

SCHn

0x0000000

24 0

Reset

LEDC_DUTY_HSCHn The register is used to control output duty. When hstimerx(x=[0,3]), selected

by high-speed channel n, has reached reg_lpoint_hschn, the output signal changes to low. (R/W)

reg_lpoint_hschn=(reg_hpoint_hschn[19:0]+reg_duty_hschn[24:4]) (1)

reg_lpoint_hschn=(reg_hpoint_hschn[19:0]+reg_duty_hschn[24:4] +1) (2)

See the Functional Description for more information on when (1) or (2) is chosen.

Register 10.4: LEDC_HSCHn_CONF1_REG (n: 0-7) (0x28+0x10*n)

LE
DC_D

UTY
_S

TA
RT_

HSCHn

0

31

LE
DC_D

UTY
_IN

C_H
SCHn

1

30

LE
DC_D

UTY
_N

UM
_H

SCHn

0x000

29 20

LE
DC_D

UTY
_C

YCLE
_H

SCHn

0x000

19 10

LE
DC_D

UTY
_S

CALE
_H

SCHn

0x000

9 0

Reset

LEDC_DUTY_START_HSCHn When REG_DUTY_NUM_HSCHn, REG_DUTY_CYCLE_HSCHn and

REG_DUTY_SCALE_HSCHn has been configured, these register will not take effect until

REG_DUTY_START_HSCHn is set. This bit is automatically cleared by hardware. (R/W)

LEDC_DUTY_INC_HSCHn This register is used to increase or decrease the duty of output signal for

high-speed channel n. (R/W)

LEDC_DUTY_NUM_HSCHn This register is used to control the number of times the duty cycle is

increased or decreased for high-speed channel n. (R/W)

LEDC_DUTY_CYCLE_HSCHn This register is used to increase or decrease the duty cycle every time

REG_DUTY_CYCLE_HSCHn cycles for high-speed channel n. (R/W)

LEDC_DUTY_SCALE_HSCHn This register is used to increase or decrease the step scale for high-

speed channel n. (R/W)

Espressif Systems 234 ESP32 Technical Reference Manual V1.8

10. LED_PWM

Register 10.5: LEDC_HSCHn_DUTY_R_REG (n: 0-7) (0x2C+0x10*n)

(re
se

rve
d)

0x00

31 25

LE
DC_D

UTY
_H

SCHn
_R

0x0000000

24 0

Reset

LEDC_DUTY_HSCHn_R This register represents the current duty cycle of the output signal for high-

speed channel n. (RO)

Register 10.6: LEDC_LSCHn_CONF0_REG (n: 0-7) (0xBC+0x10*n)

(re
se

rve
d)

0x0000000

31 5

LE
DC_P

ARA_U
P_L

SCHn

0

4

LE
DC_ID

LE
_L

V_L
SCHn

0

3

LE
DC_S

IG
_O

UT_
EN_L

SCHn

0

2

LE
DC_T

IM
ER_S

EL_
LS

CHn

0

1 0

Reset

LEDC_PARA_UP_LSCHn This bit is used to update register LEDC_LSCHn_HPOINT and

LEDC_LSCHn_DUTY for low-speed channel n. (R/W)

LEDC_IDLE_LV_LSCHn This bit is used to control the output value, when low-speed channel n is

inactive. (R/W)

LEDC_SIG_OUT_EN_LSCHn This is the output enable control bit for low-speed channel n. (R/W)

LEDC_TIMER_SEL_LSCHn There are four low-speed timers, the two bits are used to select one of

them for low-speed channel n. (R/W)

0: select lstimer0;

1: select lstimer1;

2: select lstimer2;

3: select lstimer3.

Espressif Systems 235 ESP32 Technical Reference Manual V1.8

10. LED_PWM

Register 10.7: LEDC_LSCHn_HPOINT_REG (n: 0-7) (0xC0+0x10*n)

(re
se

rve
d)

0x0000

31 20

LE
DC_H

POIN
T_

LS
CHn

0x000000

19 0

Reset

LEDC_HPOINT_LSCHn The output value changes to high when lstimerx(x=[0,3]), selected by low-

speed channel n, has reached reg_hpoint_lschn[19:0]. (R/W)

Register 10.8: LEDC_LSCHn_DUTY_REG (n: 0-7) (0xC4+0x10*n)

(re
se

rve
d)

0x00

31 25

LE
DC_D

UTY
_L

SCHn

0x0000000

24 0

Reset

LEDC_DUTY_LSCHn The register is used to control output duty. When lstimerx(x=[0,3]), chosen by

low-speed channel n, has reached reg_lpoint_lschn,the output signal changes to low. (R/W)

reg_lpoint_lschn=(reg_hpoint_lschn[19:0]+reg_duty_lschn[24:4]) (1)

reg_lpoint_lschn=(reg_hpoint_lschn[19:0]+reg_duty_lschn[24:4] +1) (2)

See the Functional Description for more information on when (1) or (2) is chosen.

Espressif Systems 236 ESP32 Technical Reference Manual V1.8

10. LED_PWM

Register 10.9: LEDC_LSCHn_CONF1_REG (n: 0-7) (0xC8+0x10*n)

LE
DC_D

UTY
_S

TA
RT_

LS
CHn

0

31

LE
DC_D

UTY
_IN

C_L
SCHn

1

30

LE
DC_D

UTY
_N

UM
_L

SCHn

0x000

29 20

LE
DC_D

UTY
_C

YCLE
_L

SCHn

0x000

19 10

LE
DC_D

UTY
_S

CALE
_L

SCHn

0x000

9 0

Reset

LEDC_DUTY_START_LSCHn When reg_duty_num_hschn, reg_duty_cycle_hschn and

reg_duty_scale_hschn have been configured, these settings will not take effect until set

reg_duty_start_hschn. This bit is automatically cleared by hardware. (R/W)

LEDC_DUTY_INC_LSCHn This register is used to increase or decrease the duty of output signal for

low-speed channel n. (R/W)

LEDC_DUTY_NUM_LSCHn This register is used to control the number of times the duty cycle is

increased or decreased for low-speed channel n. (R/W)

LEDC_DUTY_CYCLE_LSCHn This register is used to increase or decrease the duty every

reg_duty_cycle_lschn cycles for low-speed channel n. (R/W)

LEDC_DUTY_SCALE_LSCHn This register is used to increase or decrease the step scale for low-

speed channel n. (R/W)

Register 10.10: LEDC_LSCHn_DUTY_R_REG (n: 0-7) (0xCC+0x10*n)

(re
se

rve
d)

0x00

31 25

LE
DC_D

UTY
_L

SCHn
_R

0x0000000

24 0

Reset

LEDC_DUTY_LSCHn_R This register represents the current duty of the output signal for low-speed

channel n. (RO)

Espressif Systems 237 ESP32 Technical Reference Manual V1.8

10. LED_PWM

Register 10.11: LEDC_HSTIMERx_CONF_REG (x: 0-3) (0x140+8*x)

(re
se

rve
d)

0x00

31 26

LE
DC_T

IC
K_S

EL_
HSTIM

ERx

0

25

LE
DC_H

STIM
ERx

_R
ST

1

24

LE
DC_H

STIM
ERx

_P
AUSE

0

23

LE
DC_D

IV_N
UM

_H
STIM

ERx

0x00000

22 5

LE
DC_H

STIM
ERx

_L
IM

0x00

4 0

Reset

LEDC_TICK_SEL_HSTIMERx This bit is used to select APB_CLK or REF_TICK for high-speed timer

x. (R/W)

1: APB_CLK;

0: REF_TICK.

LEDC_HSTIMERx_RST This bit is used to reset high-speed timer x. The counter value will be ’zero’

after reset. (R/W)

LEDC_HSTIMERx_PAUSE This bit is used to suspend the counter in high-speed timer x. (R/W)

LEDC_DIV_NUM_HSTIMERx This register is used to configure the division factor for the divider in

high-speed timer x. The least significant eight bits represent the fractional part. (R/W)

LEDC_HSTIMERx_LIM This register is used to control the range of the counter in high-speed timer

x. The counter range is [0,2**reg_hstimerx_lim], the maximum bit width for counter is 20. (R/W)

Register 10.12: LEDC_HSTIMERx_VALUE_REG (x: 0-3) (0x144+8*x)

(re
se

rve
d)

0x0000

31 20

LE
DC_H

STIM
ERx

_C
NT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

LEDC_HSTIMERx_CNT Software can read this register to get the current counter value of high-speed

timer x. (RO)

Espressif Systems 238 ESP32 Technical Reference Manual V1.8

10. LED_PWM

Register 10.13: LEDC_LSTIMERx_CONF_REG (x: 0-3) (0x160+8*x)

(re
se

rve
d)

0x00

31 27

LE
DC_L

STIM
ERx

_P
ARA_U

P

0

26

LE
DC_T

IC
K_S

EL_
LS

TIM
ERx

0

25

LE
DC_L

STIM
ERx

_R
ST

1

24

LE
DC_L

STIM
ERx

_P
AUSE

0

23

LE
DC_D

IV_N
UM

_L
STIM

ERx

0x00000

22 5

LE
DC_L

STIM
ERx

_L
IM

0x00

4 0

Reset

LEDC_LSTIMERx_PARA_UP Set this bit to update REG_DIV_NUM_LSTIMEx and

REG_LSTIMERx_LIM. (R/W)

LEDC_TICK_SEL_LSTIMERx This bit is used to select SLOW_CLK or REF_TICK for low-speed timer

x. (R/W)

1: SLOW_CLK;

0: REF_TICK.

LEDC_LSTIMERx_RST This bit is used to reset low-speed timer x. The counter will show 0 after

reset. (R/W)

LEDC_LSTIMERx_PAUSE This bit is used to suspend the counter in low-speed timer x. (R/W)

LEDC_DIV_NUM_LSTIMERx This register is used to configure the division factor for the divider in

low-speed timer x. The least significant eight bits represent the fractional part. (R/W)

LEDC_LSTIMERx_LIM This register is used to control the range of the counter in low-speed timer x.

The counter range is [0,2**reg_lstimerx_lim], the max bit width for counter is 20. (R/W)

Register 10.14: LEDC_LSTIMERx_VALUE_REG (x: 0-3) (0x164+8*x)

(re
se

rve
d)

0x0000

31 20

LE
DC_L

STIM
ERx

_C
NT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

LEDC_LSTIMERx_CNT Software can read this register to get the current counter value of low-speed

timer x. (RO)

Espressif Systems 239 ESP32 Technical Reference Manual V1.8

10. LED_PWM

Register 10.15: LEDC_INT_RAW_REG (0x0180)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH7_
IN

T_
RAW

0

23

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH6_
IN

T_
RAW

0

22

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH5_
IN

T_
RAW

0

21

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH4_
IN

T_
RAW

0

20

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH3_
IN

T_
RAW

0

19

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH2_
IN

T_
RAW

0

18

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH1_
IN

T_
RAW

0

17

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH0_
IN

T_
RAW

0

16

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH7_
IN

T_
RAW

0

15

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH6_
IN

T_
RAW

0

14

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH5_
IN

T_
RAW

0

13

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH4_
IN

T_
RAW

0

12

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH3_
IN

T_
RAW

0

11

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH2_
IN

T_
RAW

0

10

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH1_
IN

T_
RAW

0

9

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH0_
IN

T_
RAW

0

8

LE
DC_L

STIM
ER3_

OVF_
IN

T_
RAW

0

7

LE
DC_L

STIM
ER2_

OVF_
IN

T_
RAW

0

6

LE
DC_L

STIM
ER1_

OVF_
IN

T_
RAW

0

5

LE
DC_L

STIM
ER0_

OVF_
IN

T_
RAW

0

4

LE
DC_H

STIM
ER3_

OVF_
IN

T_
RAW

0

3

LE
DC_H

STIM
ER2_

OVF_
IN

T_
RAW

0

2

LE
DC_H

STIM
ER1_

OVF_
IN

T_
RAW

0

1

LE
DC_H

STIM
ER0_

OVF_
IN

T_
RAW

0

0

Reset

LEDC_DUTY_CHNG_END_LSCHn_INT_RAW The raw interrupt status bit for the

LEDC_DUTY_CHNG_END_LSCHn_INT interrupt. (RO)

LEDC_DUTY_CHNG_END_HSCHn_INT_RAW The raw interrupt status bit for the

LEDC_DUTY_CHNG_END_HSCHn_INT interrupt. (RO)

LEDC_LSTIMERx_OVF_INT_RAW The raw interrupt status bit for the LEDC_LSTIMERx_OVF_INT

interrupt. (RO)

LEDC_HSTIMERx_OVF_INT_RAW The raw interrupt status bit for the LEDC_HSTIMERx_OVF_INT

interrupt. (RO)

Register 10.16: LEDC_INT_ST_REG (0x0184)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH7_
IN

T_
ST

0

23

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH6_
IN

T_
ST

0

22

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH5_
IN

T_
ST

0

21

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH4_
IN

T_
ST

0

20

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH3_
IN

T_
ST

0

19

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH2_
IN

T_
ST

0

18

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH1_
IN

T_
ST

0

17

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH0_
IN

T_
ST

0

16

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH7_
IN

T_
ST

0

15

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH6_
IN

T_
ST

0

14

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH5_
IN

T_
ST

0

13

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH4_
IN

T_
ST

0

12

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH3_
IN

T_
ST

0

11

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH2_
IN

T_
ST

0

10

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH1_
IN

T_
ST

0

9

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH0_
IN

T_
ST

0

8

LE
DC_L

STIM
ER3_

OVF_
IN

T_
ST

0

7

LE
DC_L

STIM
ER2_

OVF_
IN

T_
ST

0

6

LE
DC_L

STIM
ER1_

OVF_
IN

T_
ST

0

5

LE
DC_L

STIM
ER0_

OVF_
IN

T_
ST

0

4

LE
DC_H

STIM
ER3_

OVF_
IN

T_
ST

0

3

LE
DC_H

STIM
ER2_

OVF_
IN

T_
ST

0

2

LE
DC_H

STIM
ER1_

OVF_
IN

T_
ST

0

1

LE
DC_H

STIM
ER0_

OVF_
IN

T_
ST

0

0

Reset

LEDC_DUTY_CHNG_END_LSCHn_INT_ST The masked interrupt status bit for the

LEDC_DUTY_CHNG_END_LSCHn_INT interrupt. (RO)

LEDC_DUTY_CHNG_END_HSCHn_INT_ST The masked interrupt status bit for the

LEDC_DUTY_CHNG_END_HSCHn_INT interrupt. (RO)

LEDC_LSTIMERx_OVF_INT_ST The masked interrupt status bit for the LEDC_LSTIMERx_OVF_INT

interrupt. (RO)

LEDC_HSTIMERx_OVF_INT_ST The masked interrupt status bit for the LEDC_HSTIMERx_OVF_INT

interrupt. (RO)

Espressif Systems 240 ESP32 Technical Reference Manual V1.8

10. LED_PWM

Register 10.17: LEDC_INT_ENA_REG (0x0188)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH7_
IN

T_
ENA

0

23

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH6_
IN

T_
ENA

0

22

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH5_
IN

T_
ENA

0

21

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH4_
IN

T_
ENA

0

20

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH3_
IN

T_
ENA

0

19

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH2_
IN

T_
ENA

0

18

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH1_
IN

T_
ENA

0

17

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH0_
IN

T_
ENA

0

16

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH7_
IN

T_
ENA

0

15

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH6_
IN

T_
ENA

0

14

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH5_
IN

T_
ENA

0

13

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH4_
IN

T_
ENA

0

12

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH3_
IN

T_
ENA

0

11

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH2_
IN

T_
ENA

0

10

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH1_
IN

T_
ENA

0

9

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH0_
IN

T_
ENA

0

8

LE
DC_L

STIM
ER3_

OVF_
IN

T_
ENA

0

7

LE
DC_L

STIM
ER2_

OVF_
IN

T_
ENA

0

6

LE
DC_L

STIM
ER1_

OVF_
IN

T_
ENA

0

5

LE
DC_L

STIM
ER0_

OVF_
IN

T_
ENA

0

4

LE
DC_H

STIM
ER3_

OVF_
IN

T_
ENA

0

3

LE
DC_H

STIM
ER2_

OVF_
IN

T_
ENA

0

2

LE
DC_H

STIM
ER1_

OVF_
IN

T_
ENA

0

1

LE
DC_H

STIM
ER0_

OVF_
IN

T_
ENA

0

0

Reset

LEDC_DUTY_CHNG_END_LSCHn_INT_ENA The interrupt enable bit for the

LEDC_DUTY_CHNG_END_LSCHn_INT interrupt. (R/W)

LEDC_DUTY_CHNG_END_HSCHn_INT_ENA The interrupt enable bit for the

LEDC_DUTY_CHNG_END_HSCHn_INT interrupt. (R/W)

LEDC_LSTIMERx_OVF_INT_ENA The interrupt enable bit for the LEDC_LSTIMERx_OVF_INT inter-

rupt. (R/W)

LEDC_HSTIMERx_OVF_INT_ENA The interrupt enable bit for the LEDC_HSTIMERx_OVF_INT inter-

rupt. (R/W)

Register 10.18: LEDC_INT_CLR_REG (0x018C)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH7_
IN

T_
CLR

0

23

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH6_
IN

T_
CLR

0

22

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH5_
IN

T_
CLR

0

21

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH4_
IN

T_
CLR

0

20

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH3_
IN

T_
CLR

0

19

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH2_
IN

T_
CLR

0

18

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH1_
IN

T_
CLR

0

17

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH0_
IN

T_
CLR

0

16

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH7_
IN

T_
CLR

0

15

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH6_
IN

T_
CLR

0

14

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH5_
IN

T_
CLR

0

13

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH4_
IN

T_
CLR

0

12

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH3_
IN

T_
CLR

0

11

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH2_
IN

T_
CLR

0

10

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH1_
IN

T_
CLR

0

9

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH0_
IN

T_
CLR

0

8

LE
DC_L

STIM
ER3_

OVF_
IN

T_
CLR

0

7

LE
DC_L

STIM
ER2_

OVF_
IN

T_
CLR

0

6

LE
DC_L

STIM
ER1_

OVF_
IN

T_
CLR

0

5

LE
DC_L

STIM
ER0_

OVF_
IN

T_
CLR

0

4

LE
DC_H

STIM
ER3_

OVF_
IN

T_
CLR

0

3

LE
DC_H

STIM
ER2_

OVF_
IN

T_
CLR

0

2

LE
DC_H

STIM
ER1_

OVF_
IN

T_
CLR

0

1

LE
DC_H

STIM
ER0_

OVF_
IN

T_
CLR

0

0

Reset

LEDC_DUTY_CHNG_END_LSCHn_INT_CLR Set this bit to clear the

LEDC_DUTY_CHNG_END_LSCHn_INT interrupt. (WO)

LEDC_DUTY_CHNG_END_HSCHn_INT_CLR Set this bit to clear the

LEDC_DUTY_CHNG_END_HSCHn_INT interrupt. (WO)

LEDC_LSTIMERx_OVF_INT_CLR Set this bit to clear the LEDC_LSTIMERx_OVF_INT interrupt. (WO)

LEDC_HSTIMERx_OVF_INT_CLR Set this bit to clear the LEDC_HSTIMERx_OVF_INT interrupt.

(WO)

Espressif Systems 241 ESP32 Technical Reference Manual V1.8

10. LED_PWM

Register 10.19: LEDC_CONF_REG (0x0190)

(re
se

rve
d)

0 0

31 1

LE
DC_A

PB_C
LK

_S
EL

0

0

Reset

LEDC_APB_CLK_SEL This bit is used to set the frequency of SLOW_CLK. (R/W)

0: 8 MHz;

1: 80 MHz.

Espressif Systems 242 ESP32 Technical Reference Manual V1.8

11. REMOTE CONTROLLER PERIPHERAL

11. Remote Controller Peripheral

11.1 Introduction

The RMT (Remote Control) module is primarily designed to send and receive infrared remote control signals that

use on-off-keying of a carrier frequency, but due to its design it can be used to generate various types of signals.

An RMT transmitter does this by reading consecutive duration values for an active and inactive output from the

built-in RAM block, optionally modulating it with a carrier wave. A receiver will inspect its input signal, optionally

filtering it, and will place the lengths of time the signal is active and inactive in the RAM block.

The RMT module has eight channels, numbered zero to seven; registers, signals and blocks that are duplicated

in each channel are indicated by an n which is used as a placeholder for the channel number.

11.2 Functional Description

11.2.1 RMT Architecture

Figure 63: RMT Architecture

The RMT module contains eight channels; each channel has a transmitter and receiver, of which one can be

active per channel. The eight channels share a 512x32-bit RAM block which can be read and written by the

processor cores over the APB bus, read by the transmitters, and written by the receivers. The transmitted signal

can optionally be modulated by a carrier wave. Each channel is clocked by a divided-down signal derived from

either the APB bus clock or REF_TICK.

Espressif Systems 243 ESP32 Technical Reference Manual V1.8

11. REMOTE CONTROLLER PERIPHERAL

11.2.2 RMT RAM

Figure 64: Data Structure

The data structure in RAM is shown in Figure 64. Each 32-bit value contains two 16-bit entries, containing two

fields each: ”level” indicates whether a high-/low-level value was received or is going to be sent, and ”period” is

the duration (in channel clock periods) for which the level lasts. A zero period is interpreted as an end-marker:

the transmitter will stop transmitting once it has read this, and the receiver will write this, once it has detected that

the signal it received has gone idle.

Normally, only one block of 64x32-bit worth of data can be sent or received. If the data size is larger than this

block size, blocks can either be extended or the channel can be configured for wraparound mode.

The RMT RAM can be accessed via APB bus. The initial address is RMT base address + 0x800. The RAM block

is divided into eight 64x32-bit blocks. By default, each channel uses one block (block zero for channel zero,

block one for channel one, and so on). Users can extend the memory for a specific channel by configuring

RMT_MEM_SIZE_CHn register; setting this to >1 will prompt the channel to use the memory of subsequent

channels as well. The RAM address range for channel n is start_addr_CHn to end_addr_CHn, which are defined

by:

start_addr_chn = RMT base address + 0x800 + 64 ∗ 4 ∗ n, and

end_addr_chn = RMT base address + 0x800 + �64 ∗ 4 ∗ n+ 64 ∗ 4 ∗ RMT_MEM_SIZE_CHn�mod�512 ∗ 4�

To protect a receiver from overwriting the blocks a transmitter is about to transmit, RMT_MEM_OWNER_CHn

can be configured to assign the owner, i.e. transmitter or receiver, of channel n’s RAM block. If this ownership is

violated, the RMT_CHn_ERR interrupt will be generated.

11.2.3 Clock

The main clock for a channel is generated by taking either the 80 MHz APB clock or REF_TICK (usually 1MHz),

according to the state of RMT_REF_ALWAYS_ON_CHn. (For more information on the clock sources, please see

Chapter Reset And Clock.) Then, the aforementioned state gets scaled down using a configurable 8-bit divider to

create the channel clock which is used by both the carrier wave generator and the counter. The divider value can

be set by configuring RMT_DIV_CNT_CHn.

11.2.4 Transmitter

When the RMT_TX_START_CHn register is 1, the transmitter of channel n will start reading data from RAM and

sending it. The transmitter will receive a 32-bits value each time it reads from RAM. Of these 32 bits, the low

16-bit entry is sent first and the high entry second.

To transmit more data than can be fitted in the channel’s RAM, wraparound mode can be enabled. In this mode,

when the transmitter has reached the last entry in the channel’s memory, it will loop back to the first byte. To use

this mechanism to send more data than can be fitted in the channel’s RAM, fill the RAM with the initial events and

Espressif Systems 244 ESP32 Technical Reference Manual V1.8

11. REMOTE CONTROLLER PERIPHERAL

set RMT_CHn_TX_LIM_REG to cause an RMT_CHn_TX_THR_EVENT_INT interrupt before the wraparound

happens. Then, when the interrupt happens, the already sent data should be replaced by subsequent events:

when the wraparound happens the transmitter will seamlessly continue sending the new events.

With or without wraparound mode enabled, transmission ends when an entry with zero length is encountered.

When this happens, the transmitter will generate a RMT_CHn_TX_END_INT interrupt, and return to the idle state.

When a transmitter is in the idle state, users can configure RMT_IDLE_OUT_EN_CHn and

RMT_IDLE_OUT_LV_CHn to control the transmitter output manually.

The output of the transmitter can be modulated using a carrier wave by setting RMT_CARRIER_EN_CHn. The

carrier frequency and duty cycle can be configured by adjusting its high and low durations in channel clock

cycles, in RMT_CARRIER_HIGH_CHn and RMT_CARRIER_HIGH_CHn.

11.2.5 Receiver

When RMT_RX_EN_CHn is set to 1, the receiver in channel n becomes active, measuring the duration between

input signal edges. These will be written as period/level value pairs to the channel RAM in the same fashion as

the transmitter sends them. Receiving ends when the receiver detects no change in signal level for more than

RMT_IDLE_THRES_CHn channel clock ticks; the receiver will write a final entry with 0 period, generate an

RMT_CHn_RX_END_INT_RAW interrupt, and return to the idle state.

The receiver has an input signal filter which can be configured using RMT_RX_FILTER_EN_CHn: The filter will

remove pulses with a length of less than RMT_RX_FILTER_THRES_CHn in APB clock periods.

When the RMT module is inactive, the RAM can be put into low-power mode by setting the RMT_MEM_PD

register to 1.

11.2.6 Interrupts

• RMT_CHn_TX_THR_EVENT_INT: Triggered when the number of events the transmitter has sent matches

the contents of the RMT_CHn_TX_LIM_REG register.

• RMT_CHn_TX_END_INT: Triggered when the transmitter has finished transmitting the signal.

• RMT_CHn_RX_END_INT: Triggered when the receiver has finished receiving a signal.

11.3 Register Summary

Name Description Address Access

Configuration registers

RMT_CH0CONF0_REG Channel 0 config register 0 0x3FF56020 R/W

RMT_CH0CONF1_REG Channel 0 config register 1 0x3FF56024 R/W

RMT_CH1CONF0_REG Channel 1 config register 0 0x3FF56028 R/W

RMT_CH1CONF1_REG Channel 1 config register 1 0x3FF5602C R/W

RMT_CH2CONF0_REG Channel 2 config register 0 0x3FF56030 R/W

RMT_CH2CONF1_REG Channel 2 config register 1 0x3FF56034 R/W

RMT_CH3CONF0_REG Channel 3 config register 0 0x3FF56038 R/W

RMT_CH3CONF1_REG Channel 3 config register 1 0x3FF5603C R/W

RMT_CH4CONF0_REG Channel 4 config register 0 0x3FF56040 R/W

Espressif Systems 245 ESP32 Technical Reference Manual V1.8

11. REMOTE CONTROLLER PERIPHERAL

RMT_CH4CONF1_REG Channel 4 config register 1 0x3FF56044 R/W

RMT_CH5CONF0_REG Channel 5 config register 0 0x3FF56048 R/W

RMT_CH5CONF1_REG Channel 5 config register 1 0x3FF5604C R/W

RMT_CH6CONF0_REG Channel 6 config register 0 0x3FF56050 R/W

RMT_CH6CONF1_REG Channel 6 config register 1 0x3FF56054 R/W

RMT_CH7CONF0_REG Channel 7 config register 0 0x3FF56058 R/W

RMT_CH7CONF1_REG Channel 7 config register 1 0x3FF5605C R/W

Interrupt registers

RMT_INT_RAW_REG Raw interrupt status 0x3FF560A0 RO

RMT_INT_ST_REG Masked interrupt status 0x3FF560A4 RO

RMT_INT_ENA_REG Interrupt enable bits 0x3FF560A8 R/W

RMT_INT_CLR_REG Interrupt clear bits 0x3FF560AC WO

Carrier wave duty cycle registers

RMT_CH0CARRIER_DUTY_REG Channel 0 duty cycle configuration register 0x3FF560B0 R/W

RMT_CH1CARRIER_DUTY_REG Channel 1 duty cycle configuration register 0x3FF560B4 R/W

RMT_CH2CARRIER_DUTY_REG Channel 2 duty cycle configuration register 0x3FF560B8 R/W

RMT_CH3CARRIER_DUTY_REG Channel 3 duty cycle configuration register 0x3FF560BC R/W

RMT_CH4CARRIER_DUTY_REG Channel 4 duty cycle configuration register 0x3FF560C0 R/W

RMT_CH5CARRIER_DUTY_REG Channel 5 duty cycle configuration register 0x3FF560C4 R/W

RMT_CH6CARRIER_DUTY_REG Channel 6 duty cycle configuration register 0x3FF560C8 R/W

RMT_CH7CARRIER_DUTY_REG Channel 7 duty cycle configuration register 0x3FF560CC R/W

Tx event configuration registers

RMT_CH0_TX_LIM_REG Channel 0 Tx event configuration register 0x3FF560D0 R/W

RMT_CH1_TX_LIM_REG Channel 1 Tx event configuration register 0x3FF560D4 R/W

RMT_CH2_TX_LIM_REG Channel 2 Tx event configuration register 0x3FF560D8 R/W

RMT_CH3_TX_LIM_REG Channel 3 Tx event configuration register 0x3FF560DC R/W

RMT_CH4_TX_LIM_REG Channel 4 Tx event configuration register 0x3FF560E0 R/W

RMT_CH5_TX_LIM_REG Channel 5 Tx event configuration register 0x3FF560E4 R/W

RMT_CH6_TX_LIM_REG Channel 6 Tx event configuration register 0x3FF560E8 R/W

RMT_CH7_TX_LIM_REG Channel 7 Tx event configuration register 0x3FF560EC R/W

Other registers

RMT_APB_CONF_REG RMT-wide configuration register 0x3FF560F0 R/W

Espressif Systems 246 ESP32 Technical Reference Manual V1.8

11. REMOTE CONTROLLER PERIPHERAL

11.4 Registers

Register 11.1: RMT_CHnCONF0_REG (n: 0-7) (0x0058+8*n)

(re
se

rve
d)

0x0

31

RM
T_

M
EM

_P
D

0

30

RM
T_

CARRIER_O
UT_

LV
_C

Hn

1

29

RM
T_

CARRIER_E
N_C

Hn

1

28

RM
T_

M
EM

_S
IZE

_C
Hn

0x01

27 24

RM
T_

ID
LE

_T
HRES_C

Hn

0x01000

23 8

RM
T_

DIV_C
NT_

CHn

0x002

7 0

Reset

RMT_MEM_PD This bit is used to power down the entire RMT RAM block. (It only exists in

RMT_CH0CONF0). 1: power down memory; 0: power up memory. (R/W)

RMT_CARRIER_OUT_LV_CHn This bit is used for configuration when the carrier wave is being trans-

mitted. Transmit on low output level with 1, and transmit on high output level with 0. (R/W)

RMT_CARRIER_EN_CHn This is the carrier modulation enable control bit for channeln. Carrier mod-

ulation is enabled with 1, while carrier modulation is disabled with 0. (R/W)

RMT_MEM_SIZE_CHn This register is used to configure the amount of memory blocks allocated to

channel n (R/W)

RMT_IDLE_THRES_CHn In receive mode, when no edge is detected on the input signal for longer

than reg_idle_thres_chn channel clock cycles, the receive process is finished. (R/W)

RMT_DIV_CNT_CHn This register is used to set the divider for the channel clock of channel n. (R/W)

Espressif Systems 247 ESP32 Technical Reference Manual V1.8

11. REMOTE CONTROLLER PERIPHERAL

Register 11.2: RMT_CHnCONF1_REG (n: 0-7) (0x005c+8*n)

(re
se

rve
d)

0x0000

31 20

RM
T_

ID
LE

_O
UT_

EN_C
Hn

0

19

RM
T_

ID
LE

_O
UT_

LV
_C

Hn

0

18

RM
T_

REF_
ALW

AY
S_O

N_C
Hn

0

17

RM
T_

REF_
CNT_

RST_
CHn

0

16

RM
T_

RX_
FIL

TE
R_T

HRES_C
Hn

0x00F

15 8

RM
T_

RX_
FIL

TE
R_E

N_C
Hn

0

7

RM
T_

TX
_C

ONTI_
M

ODE_C
Hn

0

6

RM
T_

M
EM

_O
W

NER_C
Hn

1

5

(re
se

rve
d)

0

4

RM
T_

M
EM

_R
D_R

ST_
CHn

0

3

RM
T_

M
EM

_W
R_R

ST_
CHn

0

2

RM
T_

RX_
EN_C

Hn

0

1

RM
T_

TX
_S

TA
RT_

CHn

0

0

Reset

RMT_IDLE_OUT_EN_CHn This is the output enable control bit for channel n in IDLE state. (R/W)

RMT_IDLE_OUT_LV_CHn This bit configures the output signals level for channel n in IDLE state.

(R/W)

RMT_REF_ALWAYS_ON_CHn This bit is used to select the channel’s base clock. 1:clk_apb;

0:clk_ref. (R/W)

RMT_REF_CNT_RST_CHn Setting this bit resets the clock divider of channel n. (R/W)

RMT_RX_FILTER_THRES_CHn In receive mode, channel n ignores input pulse when the pulse width

is smaller than this value in APB clock periods. (R/W)

RMT_RX_FILTER_EN_CHn This is the receive filter enable bit for channel n. (R/W)

RMT_TX_CONTI_MODE_CHn If this bit is set, instead of going to idle when the transmission ends,

the transmitter will restart transmission. This results in a repeating output signal. (R/W)

RMT_MEM_OWNER_CHn This bit marks channel n’s RAM block ownership. Number 1 stands for

the receiver using the RAM, while 0 stands for the transmitter using the RAM. (R/W)

RMT_MEM_RD_RST_CHn Set this bit to reset read RAM address for channel n by transmitter access.

(R/W)

RMT_MEM_WR_RST_CHn Set this bit to reset write RAM address for channel n by receiver access.

(R/W)

RMT_RX_EN_CHn Set this bit to enable receiving data on channel n. (R/W)

RMT_TX_START_CHn Set this bit to start sending data on channel n. (R/W)

Espressif Systems 248 ESP32 Technical Reference Manual V1.8

11. REMOTE CONTROLLER PERIPHERAL

Register 11.3: RMT_INT_RAW_REG (0x00a0)

RM
T_

CH7_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

31

RM
T_

CH6_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

30

RM
T_

CH5_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

29

RM
T_

CH4_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

28

RM
T_

CH3_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

27

RM
T_

CH2_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

26

RM
T_

CH1_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

25

RM
T_

CH0_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

24

RM
T_

CH7_
ERR_IN

T_
RAW

0

23

RM
T_

CH7_
RX_

END_IN
T_

RAW

0

22

RM
T_

CH7_
TX

_E
ND_IN

T_
RAW

0

21

RM
T_

CH6_
ERR_IN

T_
RAW

0

20

RM
T_

CH6_
RX_

END_IN
T_

RAW

0

19

RM
T_

CH6_
TX

_E
ND_IN

T_
RAW

0

18

RM
T_

CH5_
ERR_IN

T_
RAW

0

17

RM
T_

CH5_
RX_

END_IN
T_

RAW

0

16

RM
T_

CH5_
TX

_E
ND_IN

T_
RAW

0

15

RM
T_

CH4_
ERR_IN

T_
RAW

0

14

RM
T_

CH4_
RX_

END_IN
T_

RAW

0

13

RM
T_

CH4_
TX

_E
ND_IN

T_
RAW

0

12

RM
T_

CH3_
ERR_IN

T_
RAW

0

11

RM
T_

CH3_
RX_

END_IN
T_

RAW

0

10

RM
T_

CH3_
TX

_E
ND_IN

T_
RAW

0

9

RM
T_

CH2_
ERR_IN

T_
RAW

0

8

RM
T_

CH2_
RX_

END_IN
T_

RAW

0

7

RM
T_

CH2_
TX

_E
ND_IN

T_
RAW

0

6

RM
T_

CH1_
ERR_IN

T_
RAW

0

5

RM
T_

CH1_
RX_

END_IN
T_

RAW

0

4

RM
T_

CH1_
TX

_E
ND_IN

T_
RAW

0

3

RM
T_

CH0_
ERR_IN

T_
RAW

0

2

RM
T_

CH0_
RX_

END_IN
T_

RAW

0

1

RM
T_

CH0_
TX

_E
ND_IN

T_
RAW

0

0

Reset

RMT_CHn_TX_THR_EVENT_INT_RAW The raw interrupt status bit for the

RMT_CHn_TX_THR_EVENT_INT interrupt. (RO)

RMT_CHn_ERR_INT_RAW The raw interrupt status bit for the RMT_CHn_ERR_INT interrupt. (RO)

RMT_CHn_RX_END_INT_RAW The raw interrupt status bit for the RMT_CHn_RX_END_INT inter-

rupt. (RO)

RMT_CHn_TX_END_INT_RAW The raw interrupt status bit for the RMT_CHn_TX_END_INT interrupt.

(RO)

Register 11.4: RMT_INT_ST_REG (0x00a4)

RM
T_

CH7_
TX

_T
HR_E

VENT_
IN

T_
ST

0

31

RM
T_

CH6_
TX

_T
HR_E

VENT_
IN

T_
ST

0

30

RM
T_

CH5_
TX

_T
HR_E

VENT_
IN

T_
ST

0

29

RM
T_

CH4_
TX

_T
HR_E

VENT_
IN

T_
ST

0

28

RM
T_

CH3_
TX

_T
HR_E

VENT_
IN

T_
ST

0

27

RM
T_

CH2_
TX

_T
HR_E

VENT_
IN

T_
ST

0

26

RM
T_

CH1_
TX

_T
HR_E

VENT_
IN

T_
ST

0

25

RM
T_

CH0_
TX

_T
HR_E

VENT_
IN

T_
ST

0

24

RM
T_

CH7_
ERR_IN

T_
ST

0

23

RM
T_

CH7_
RX_

END_IN
T_

ST

0

22

RM
T_

CH7_
TX

_E
ND_IN

T_
ST

0

21

RM
T_

CH6_
ERR_IN

T_
ST

0

20

RM
T_

CH6_
RX_

END_IN
T_

ST

0

19

RM
T_

CH6_
TX

_E
ND_IN

T_
ST

0

18

RM
T_

CH5_
ERR_IN

T_
ST

0

17

RM
T_

CH5_
RX_

END_IN
T_

ST

0

16

RM
T_

CH5_
TX

_E
ND_IN

T_
ST

0

15

RM
T_

CH4_
ERR_IN

T_
ST

0

14

RM
T_

CH4_
RX_

END_IN
T_

ST

0

13

RM
T_

CH4_
TX

_E
ND_IN

T_
ST

0

12

RM
T_

CH3_
ERR_IN

T_
ST

0

11

RM
T_

CH3_
RX_

END_IN
T_

ST

0

10

RM
T_

CH3_
TX

_E
ND_IN

T_
ST

0

9

RM
T_

CH2_
ERR_IN

T_
ST

0

8

RM
T_

CH2_
RX_

END_IN
T_

ST

0

7

RM
T_

CH2_
TX

_E
ND_IN

T_
ST

0

6

RM
T_

CH1_
ERR_IN

T_
ST

0

5

RM
T_

CH1_
RX_

END_IN
T_

ST

0

4

RM
T_

CH1_
TX

_E
ND_IN

T_
ST

0

3

RM
T_

CH0_
ERR_IN

T_
ST

0

2

RM
T_

CH0_
RX_

END_IN
T_

ST

0

1

RM
T_

CH0_
TX

_E
ND_IN

T_
ST

0

0

Reset

RMT_CHn_TX_THR_EVENT_INT_ST The masked interrupt status bit for the

RMT_CHn_TX_THR_EVENT_INT interrupt. (RO)

RMT_CHn_ERR_INT_ST The masked interrupt status bit for the RMT_CHn_ERR_INT interrupt. (RO)

RMT_CHn_RX_END_INT_ST The masked interrupt status bit for the RMT_CHn_RX_END_INT inter-

rupt. (RO)

RMT_CHn_TX_END_INT_ST The masked interrupt status bit for the RMT_CHn_TX_END_INT inter-

rupt. (RO)

Espressif Systems 249 ESP32 Technical Reference Manual V1.8

11. REMOTE CONTROLLER PERIPHERAL

Register 11.5: RMT_INT_ENA_REG (0x00a8)

RM
T_

CH7_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

31

RM
T_

CH6_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

30

RM
T_

CH5_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

29

RM
T_

CH4_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

28

RM
T_

CH3_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

27

RM
T_

CH2_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

26

RM
T_

CH1_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

25

RM
T_

CH0_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

24

RM
T_

CH7_
ERR_IN

T_
ENA

0

23

RM
T_

CH7_
RX_

END_IN
T_

ENA

0

22

RM
T_

CH7_
TX

_E
ND_IN

T_
ENA

0

21

RM
T_

CH6_
ERR_IN

T_
ENA

0

20

RM
T_

CH6_
RX_

END_IN
T_

ENA

0

19

RM
T_

CH6_
TX

_E
ND_IN

T_
ENA

0

18

RM
T_

CH5_
ERR_IN

T_
ENA

0

17

RM
T_

CH5_
RX_

END_IN
T_

ENA

0

16

RM
T_

CH5_
TX

_E
ND_IN

T_
ENA

0

15

RM
T_

CH4_
ERR_IN

T_
ENA

0

14

RM
T_

CH4_
RX_

END_IN
T_

ENA

0

13

RM
T_

CH4_
TX

_E
ND_IN

T_
ENA

0

12

RM
T_

CH3_
ERR_IN

T_
ENA

0

11

RM
T_

CH3_
RX_

END_IN
T_

ENA

0

10

RM
T_

CH3_
TX

_E
ND_IN

T_
ENA

0

9

RM
T_

CH2_
ERR_IN

T_
ENA

0

8

RM
T_

CH2_
RX_

END_IN
T_

ENA

0

7

RM
T_

CH2_
TX

_E
ND_IN

T_
ENA

0

6

RM
T_

CH1_
ERR_IN

T_
ENA

0

5

RM
T_

CH1_
RX_

END_IN
T_

ENA

0

4

RM
T_

CH1_
TX

_E
ND_IN

T_
ENA

0

3

RM
T_

CH0_
ERR_IN

T_
ENA

0

2

RM
T_

CH0_
RX_

END_IN
T_

ENA

0

1

RM
T_

CH0_
TX

_E
ND_IN

T_
ENA

0

0

Reset

RMT_CHn_TX_THR_EVENT_INT_ENA The interrupt enable bit for the

RMT_CHn_TX_THR_EVENT_INT interrupt. (R/W)

RMT_CHn_ERR_INT_ENA The interrupt enable bit for the RMT_CHn_ERROR_INT interrupt. (R/W)

RMT_CHn_RX_END_INT_ENA The interrupt enable bit for the RMT_CHn_RX_END_INT interrupt.

(R/W)

RMT_CHn_TX_END_INT_ENA The interrupt enable bit for the RMT_CHn_TX_END_INT interrupt.

(R/W)

Register 11.6: RMT_INT_CLR_REG (0x00ac)

RM
T_

CH7_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

31

RM
T_

CH6_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

30

RM
T_

CH5_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

29

RM
T_

CH4_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

28

RM
T_

CH3_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

27

RM
T_

CH2_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

26

RM
T_

CH1_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

25

RM
T_

CH0_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

24

RM
T_

CH7_
ERR_IN

T_
CLR

0

23

RM
T_

CH7_
RX_

END_IN
T_

CLR

0

22

RM
T_

CH7_
TX

_E
ND_IN

T_
CLR

0

21

RM
T_

CH6_
ERR_IN

T_
CLR

0

20

RM
T_

CH6_
RX_

END_IN
T_

CLR

0

19

RM
T_

CH6_
TX

_E
ND_IN

T_
CLR

0

18

RM
T_

CH5_
ERR_IN

T_
CLR

0

17

RM
T_

CH5_
RX_

END_IN
T_

CLR

0

16

RM
T_

CH5_
TX

_E
ND_IN

T_
CLR

0

15

RM
T_

CH4_
ERR_IN

T_
CLR

0

14

RM
T_

CH4_
RX_

END_IN
T_

CLR

0

13

RM
T_

CH4_
TX

_E
ND_IN

T_
CLR

0

12

RM
T_

CH3_
ERR_IN

T_
CLR

0

11

RM
T_

CH3_
RX_

END_IN
T_

CLR

0

10

RM
T_

CH3_
TX

_E
ND_IN

T_
CLR

0

9

RM
T_

CH2_
ERR_IN

T_
CLR

0

8

RM
T_

CH2_
RX_

END_IN
T_

CLR

0

7

RM
T_

CH2_
TX

_E
ND_IN

T_
CLR

0

6

RM
T_

CH1_
ERR_IN

T_
CLR

0

5

RM
T_

CH1_
RX_

END_IN
T_

CLR

0

4

RM
T_

CH1_
TX

_E
ND_IN

T_
CLR

0

3

RM
T_

CH0_
ERR_IN

T_
CLR

0

2

RM
T_

CH0_
RX_

END_IN
T_

CLR

0

1

RM
T_

CH0_
TX

_E
ND_IN

T_
CLR

0

0

Reset

RMT_CHn_TX_THR_EVENT_INT_CLR Set this bit to clear the RMT_CHn_TX_THR_EVENT_INT in-

terrupt. (WO)

RMT_CHn_ERR_INT_CLR Set this bit to clear the RMT_CHn_ERRINT interrupt. (WO)

RMT_CHn_RX_END_INT_CLR Set this bit to clear the RMT_CHn_RX_END_INT interrupt. (WO)

RMT_CHn_TX_END_INT_CLR Set this bit to clear the RMT_CHn_TX_END_INT interrupt. (WO)

Espressif Systems 250 ESP32 Technical Reference Manual V1.8

11. REMOTE CONTROLLER PERIPHERAL

Register 11.7: RMT_CHnCARRIER_DUTY_REG (n: 0-7) (0x00cc+4*n)

RM
T_

CARRIER_H
IG

H_C
Hn

0x00040

31 16

RM
T_

CARRIER_L
OW

_C
Hn

0x00040

15 0

Reset

RMT_CARRIER_HIGH_CHn This field is used to configure the carrier wave high-level duration (in

channel clock periods) for channel n. (R/W)

RMT_CARRIER_LOW_CHn This field is used to configure the carrier wave low-level duration (in chan-

nel clock periods) for channel n. (R/W)

Register 11.8: RMT_CHn_TX_LIM_REG (n: 0-7) (0x00ec+4*n)

(re
se

rve
d)

0x000000

31 9

RM
T_

TX
_L

IM
_C

Hn

0x080

8 0

Reset

RMT_TX_LIM_CHn When channel n sends more entries than specified here, it produces a

TX_THR_EVENT interrupt. (R/W)

Register 11.9: RMT_APB_CONF_REG (0x00f0)

(re
se

rve
d)

0x00000000

31 2

RM
T_

M
EM

_T
X_

W
RAP_E

N

0

1

Reset

RMT_MEM_TX_WRAP_EN bit enables wraparound mode: when the transmitter of a channel has

reached the end of its memory block, it will resume sending at the start of its memory region.

(R/W)

Espressif Systems 251 ESP32 Technical Reference Manual V1.8

12. PULSE_CNT

12. PULSE_CNT

12.1 Introduction

The pulse counter module is designed to count the number of rising and/or falling edges of an input signal. Each

pulse counter unit has a 16-bit signed counter register and two channels that can be configured to either

increment or decrement the counter. Each channel has a signal input that accepts signal edges to be detected,

as well as a control input that can be used to enable or disable the signal input. The inputs have optional filters

that can be used to discard unwanted glitches in the signal.

The pulse counter has eight independent units, referred to as PULSE_CNT_Un.

12.2 Functional Description

12.2.1 Architecture

Figure 65: PULSE_CNT Architecture

The architecture of a pulse counter unit is illustrated in Figure 65. Each unit has two channels: ch0 and ch1,

which are functionally equivalent. Each channel has a signal input, as well as a control input, which can both be

connected to I/O pads. The counting behavior on both the positive and negative edge can be configured

separately to increase, decrease, or do nothing to the counter value. Separately, for both control signal levels, the

hardware can be configured to modify the edge action: invert it, disable it, or do nothing. The counter itself is a

16-bit signed up/down counter. Its value can be read by software directly, but is also monitored by a set of

comparators which can trigger an interrupt.

12.2.2 Counter Channel Inputs

As stated before, the two inputs of a channel can affect the pulse counter in various ways. The specifics of this

behaviour are set by LCTRL_MODE and HCTRL_MODE in this case when the control signal is low or high,

respectively, and POS_MODE and NEG_MODE for positive and negative edges of the input signal. Setting

POS_MODE and NEG_MODE to 1 will increase the counter when an edge is detected, setting them to 2 will

decrease the counter and setting at any other value will neutralize the effect of the edge on the counter.

LCTR_MODE and HCTR_MODE modify this behaviour, when the control input has the corresponding low or high

Espressif Systems 252 ESP32 Technical Reference Manual V1.8

12. PULSE_CNT

value: 0 does not modify the NEG_MODE and POS_MODE behaviour, 1 inverts it (setting

POS_MODE/NEG_MODE to increase the counter should now decrease the counter and vice versa) and any

other value disables counter effects for that signal level.

To summarize, a few examples have been considered. In this table, the effect on the counter for a rising edge is

shown for both a low and a high control signal, as well as various other configuration options. For clarity, a short

description in brackets is added after the values. Note: x denotes ’do not care’.

POS_ MODE LCTRL_ MODE HCTRL_ MODE sig l→h when ctrl=0 sig l→h when ctrl=1

1 (inc) 0 (-) 0 (-) Inc ctr Inc ctr

2 (dec) 0 (-) 0 (-) Dec ctr Dec ctr

0 (-) x x No action No action

1 (inc) 0 (-) 1 (inv) Inc ctr Dec ctr

1 (inc) 1 (inv) 0 (-) Dec ctr Inc ctr

2 (dec) 0 (-) 1 (inv) Dec ctr Inc ctr

1 (inc) 0 (-) 2 (dis) Inc ctr No action

1 (inc) 2 (dis) 0 (-) No action Inc ctr

This table is also valid for negative edges (sig h→l) on substituting NEG_MODE for POS_MODE.

Each pulse counter unit also features a filter on each of the four inputs, adding the option to ignore short glitches

in the signals. If a PCNT_FILTER_EN_Un can be set to filter the four input signals of the unit. If this filter is

enabled, any pulses shorter than REG_FILTER_THRES_Un number of APB_CLK clock cycles will be filtered out

and will have no effect on the counter. With the filter disabled, in theory infinitely small glitches could possibly

trigger pulse counter action. However, in practice the signal inputs are sampled on APB_CLK edges and even

with the filter disabled, pulse widths lasting shorter than one APB_CLK cycle may be missed.

Apart from the input channels, software also has some control over the counter. In particular, the counter value

can be frozen to the current value by configuring PCNT_CNT_PAUSE_Un. It can also be reset to 0 by configuring

PCNT_PULSE_CNT_RST_Un.

12.2.3 Watchpoints

The pulse counters have five watchpoints that share one interrupt. Interrupt generation can be enabled or

disabled for each individual watchpoint. The watchpoints are:

• Maximum count value: Triggered when PULSE_CNT >= PCNT_THR_H_LIM_Un. Additionally, this will reset

the counter to 0.

• Minimum count value: Triggered when PULSE_CNT <= PCNT_THR_L_LIM_Un. Additionally, this will reset

the counter to 0. This is most useful when PCNT_THR_L_LIM_Un is set to a negative number.

• Two threshold values: Triggered when PULSE_CNT = PCNT_THR_THRES0_Un or

PCNT_THR_THRES1_Un.

• Zero: Triggered when PULSE_CNT = 0.

Espressif Systems 253 ESP32 Technical Reference Manual V1.8

12. PULSE_CNT

12.2.4 Examples

Figure 66: PULSE_CNT Upcounting Diagram

Figure 66 shows channel 0 being used as an up-counter. The configuration of channel 0 is shown below.

• CNT_CH0_POS_MODE_Un = 1: increase counter on the rising edge of sig_ch0_un.

• PCNT_CH0_NEG_MODE_Un = 0: no counting on the falling edge of sig_ch0_un.

• PCNT_CH0_LCTRL_MODE_Un = 0: Do not modify counter mode when sig_ch0_un is low.

• PCNT_CH0_HCTRL_MODE_Un = 2: Do not allow counter increments/decrements when sig_ch0_un is

high.

• PCNT_THR_H_LIM_Un = 5: PULSE_CNT resets to 0 when the count value increases to 5.

Figure 67: PULSE_CNT Downcounting Diagram

Figure 67 shows channel 0 decrementing the counter. The configuration of channel 0 differs from that in Figure

66 in the following two aspects:

• PCNT_CH0_LCTRL_MODE_Un = 1: invert counter mode when ctrl_ch0_un is at low level, so it will

decrease, rather than increase, the counter.

• PCNT_THR_H_LIM_Un = -5: PULSE_CNT resets to 0 when the count value decreases to -5.

12.2.5 Interrupts

PCNT_CNT_THR_EVENT_Un_INT: This interrupt gets triggered when one of the five channel comparators

detects a match.

12.3 Register Summary

Name Description Address Access

Configuration registers

Espressif Systems 254 ESP32 Technical Reference Manual V1.8

12. PULSE_CNT

Name Description Address Access

PCNT_U0_CONF0_REG Configuration register 0 for unit 0 0x3FF57000 R/W

PCNT_U1_CONF0_REG Configuration register 0 for unit 1 0x3FF5700C R/W

PCNT_U2_CONF0_REG Configuration register 0 for unit 2 0x3FF57018 R/W

PCNT_U3_CONF0_REG Configuration register 0 for unit 3 0x3FF57024 R/W

PCNT_U4_CONF0_REG Configuration register 0 for unit 4 0x3FF57030 R/W

PCNT_U5_CONF0_REG Configuration register 0 for unit 5 0x3FF5703C R/W

PCNT_U6_CONF0_REG Configuration register 0 for unit 6 0x3FF57048 R/W

PCNT_U7_CONF0_REG Configuration register 0 for unit 7 0x3FF57054 R/W

PCNT_U0_CONF1_REG Configuration register 1 for unit 0 0x3FF57004 R/W

PCNT_U1_CONF1_REG Configuration register 1 for unit 1 0x3FF57010 R/W

PCNT_U2_CONF1_REG Configuration register 1 for unit 2 0x3FF5701C R/W

PCNT_U3_CONF1_REG Configuration register 1 for unit 3 0x3FF57028 R/W

PCNT_U4_CONF1_REG Configuration register 1 for unit 4 0x3FF57034 R/W

PCNT_U5_CONF1_REG Configuration register 1 for unit 5 0x3FF57040 R/W

PCNT_U6_CONF1_REG Configuration register 1 for unit 6 0x3FF5704C R/W

PCNT_U7_CONF1_REG Configuration register 1 for unit 7 0x3FF57058 R/W

PCNT_U0_CONF2_REG Configuration register 2 for unit 0 0x3FF57008 R/W

PCNT_U1_CONF2_REG Configuration register 2 for unit 1 0x3FF57014 R/W

PCNT_U2_CONF2_REG Configuration register 2 for unit 2 0x3FF57020 R/W

PCNT_U3_CONF2_REG Configuration register 2 for unit 3 0x3FF5702C R/W

PCNT_U4_CONF2_REG Configuration register 2 for unit 4 0x3FF57038 R/W

PCNT_U5_CONF2_REG Configuration register 2 for unit 5 0x3FF57044 R/W

PCNT_U6_CONF2_REG Configuration register 2 for unit 6 0x3FF57050 R/W

PCNT_U7_CONF2_REG Configuration register 2 for unit 7 0x3FF5705C R/W

Counter values

PCNT_U0_CNT_REG Counter value for unit 0 0x3FF57060 RO

PCNT_U1_CNT_REG Counter value for unit 1 0x3FF57064 RO

PCNT_U2_CNT_REG Counter value for unit 2 0x3FF57068 RO

PCNT_U3_CNT_REG Counter value for unit 3 0x3FF5706C RO

PCNT_U4_CNT_REG Counter value for unit 4 0x3FF57070 RO

PCNT_U5_CNT_REG Counter value for unit 5 0x3FF57074 RO

PCNT_U6_CNT_REG Counter value for unit 6 0x3FF57078 RO

PCNT_U7_CNT_REG Counter value for unit 7 0x3FF5707C RO

Control registers

PCNT_CTRL_REG Control register for all counters 0x3FF570B0 R/W

Interrupt registers

PCNT_INT_RAW_REG Raw interrupt status 0x3FF57080 RO

PCNT_INT_ST_REG Masked interrupt status 0x3FF57084 RO

PCNT_INT_ENA_REG Interrupt enable bits 0x3FF57088 R/W

PCNT_INT_CLR_REG Interrupt clear bits 0x3FF5708C WO

Espressif Systems 255 ESP32 Technical Reference Manual V1.8

12. PULSE_CNT

12.4 Registers

Register 12.1: PCNT_Un_CONF0_REG (n: 0-7) (0x0+0x0C*n)

PCNT_
CH1_

LC
TR

L_
M

ODE_U
n

0

31 30

PCNT_
CH1_

HCTR
L_

M
ODE_U

n

0

29 28

PCNT_
CH1_

POS_M
ODE_U

n

0

27 26

PCNT_
CH1_

NEG_M
ODE_U

n

0

25 24

PCNT_
CH0_

LC
TR

L_
M

ODE_U
n

0

23 22

PCNT_
CH0_

HCTR
L_

M
ODE_U

n

0

21 20

PCNT_
CH0_

POS_M
ODE_U

n

0

19 18

PCNT_
CH0_

NEG_M
ODE_U

n

0

17 16

PCNT_
TH

R_T
HRES1_

EN_U
n

0

15

PCNT_
TH

R_T
HRES0_

EN_U
n

0

14

PCNT_
TH

R_L
_L

IM
_E

N_U
n

1

13

PCNT_
TH

R_H
_L

IM
_E

N_U
n

1

12

PCNT_
TH

R_Z
ERO_E

N_U
n

1

11

PCNT_
FIL

TE
R_E

N_U
n

1

10

PCNT_
FIL

TE
R_T

HRES_U
n

0x010

9 0

Reset

PCNT_CH1_LCTRL_MODE_Un This register configures how the CH1_POS_MODE/CH1_NEG_MODE

settings will be modified when the control signal is low. (R/W) 0: No modification; 1: Invert behaviour

(increase -> decrease, decrease -> increase); 2, 3: Inhibit counter modification

PCNT_CH1_HCTRL_MODE_Un This register configures how the CH1_POS_MODE/CH1_NEG_MODE

settings will be modified when the control signal is low. (R/W) 0: No modification; 1: Invert behaviour

(increase -> decrease, decrease -> increase); 2, 3: Inhibit counter modification

PCNT_CH1_POS_MODE_Un This register sets the behaviour when the signal input of channel 1 detects a

positive edge. (R/W) 1: Increment the counter; 2: Decrement the counter; 0, 3: No effect on counter

PCNT_CH1_NEG_MODE_Un This register sets the behaviour when the signal input of channel 1 detects a

negative edge. (R/W) 1: Increment the counter; 2: Decrement the counter; 0, 3: No effect on counter

PCNT_CH0_LCTRL_MODE_Un This register configures how the CH0_POS_MODE/CH0_NEG_MODE

settings will be modified when the control signal is low. (R/W) 0: No modification; 1: Invert behaviour

(increase -> decrease, decrease -> increase); 2, 3: Inhibit counter modification

PCNT_CH0_HCTRL_MODE_Un This register configures how the CH0_POS_MODE/CH0_NEG_MODE

settings will be modified when the control signal is low. (R/W) 0: No modification; 1: Invert behaviour

(increase -> decrease, decrease -> increase); 2, 3: Inhibit counter modification

PCNT_CH0_POS_MODE_Un This register sets the behaviour when the signal input of channel 0 detects a

positive edge. (R/W) 1: Increase the counter; 2: Decrease the counter; 0, 3: No effect on counter

PCNT_CH0_NEG_MODE_Un This register sets the behaviour when the signal input of channel 0 detects a

negative edge. (R/W) 1: Increase the counter; 2: Decrease the counter; 0, 3: No effect on counter

PCNT_THR_THRES1_EN_Un This is the enable bit for unit n’s thres1 comparator. (R/W)

PCNT_THR_THRES0_EN_Un This is the enable bit for unit n’s thres0 comparator. (R/W)

PCNT_THR_L_LIM_EN_Un This is the enable bit for unit n’s thr_l_lim comparator. (R/W)

PCNT_THR_H_LIM_EN_Un This is the enable bit for unit n’s thr_h_lim comparator. (R/W)

PCNT_THR_ZERO_EN_Un This is the enable bit for unit n’s zero comparator. (R/W)

PCNT_FILTER_EN_Un This is the enable bit for unit n’s input filter. (R/W)

PCNT_FILTER_THRES_Un This sets the maximum threshold, in APB_CLK cycles, for the filter. Any pulses

lasting shorter than this will be ignored when the filter is enabled. (R/W)

Espressif Systems 256 ESP32 Technical Reference Manual V1.8

12. PULSE_CNT

Register 12.2: PCNT_Un_CONF1_REG (n: 0-7) (0x4+0x0C*n)

PCNT_
CNT_

TH
RES1_

Un

0x000

31 16

PCNT_
CNT_

TH
RES0_

Un

0x000

15 0

Reset

PCNT_CNT_THRES1_Un This register is used to configure the thres1 value for unit n. (R/W)

PCNT_CNT_THRES0_Un This register is used to configure the thres0 value for unit n. (R/W)

Register 12.3: PCNT_Un_CONF2_REG (n: 0-7) (0x8+0x0C*n)

PCNT_
CNT_

L_
LIM

_U
n

0x000

31 16

PCNT_
CNT_

H_L
IM

_U
n

0x000

15 0

Reset

PCNT_CNT_L_LIM_Un This register is used to configure the thr_l_lim value for unit n. (R/W)

PCNT_CNT_H_LIM_Un This register is used to configure the thr_h_lim value for unit n. (R/W)

Register 12.4: PCNT_Un_CNT_REG (n: 0-7) (0x28+0x0C*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PCNT_
PLU

S_C
NT_

Un

0x00000

15 0

Reset

PCNT_PLUS_CNT_Un This register stores the current pulse count value for unit n. (RO)

Espressif Systems 257 ESP32 Technical Reference Manual V1.8

12. PULSE_CNT

Register 12.5: PCNT_INT_RAW_REG (0x0080)

(re
se

rve
d)

0x0000000

31 8

PCNT_
CNT_

TH
R_E

VENT_
U7_

IN
T_

RAW

0

7

PCNT_
CNT_

TH
R_E

VENT_
U6_

IN
T_

RAW

0

6

PCNT_
CNT_

TH
R_E

VENT_
U5_

IN
T_

RAW

0

5

PCNT_
CNT_

TH
R_E

VENT_
U4_

IN
T_

RAW

0

4

PCNT_
CNT_

TH
R_E

VENT_
U3_

IN
T_

RAW

0

3

PCNT_
CNT_

TH
R_E

VENT_
U2_

IN
T_

RAW

0

2

PCNT_
CNT_

TH
R_E

VENT_
U1_

IN
T_

RAW

0

1

PCNT_
CNT_

TH
R_E

VENT_
U0_

IN
T_

RAW

0

0

Reset

PCNT_CNT_THR_EVENT_Un_INT_RAW The raw interrupt status bit for the

PCNT_CNT_THR_EVENT_Un_INT interrupt. (RO)

Register 12.6: PCNT_INT_ST_REG (0x0084)

(re
se

rve
d)

0x0000000

31 8

PCNT_
CNT_

TH
R_E

VENT_
U7_

IN
T_

ST

0

7

PCNT_
CNT_

TH
R_E

VENT_
U6_

IN
T_

ST

0

6

PCNT_
CNT_

TH
R_E

VENT_
U5_

IN
T_

ST

0

5

PCNT_
CNT_

TH
R_E

VENT_
U4_

IN
T_

ST

0

4

PCNT_
CNT_

TH
R_E

VENT_
U3_

IN
T_

ST

0

3

PCNT_
CNT_

TH
R_E

VENT_
U2_

IN
T_

ST

0

2

PCNT_
CNT_

TH
R_E

VENT_
U1_

IN
T_

ST

0

1

PCNT_
CNT_

TH
R_E

VENT_
U0_

IN
T_

ST

0

0

Reset

PCNT_CNT_THR_EVENT_Un_INT_ST The masked interrupt status bit for the

PCNT_CNT_THR_EVENT_Un_INT interrupt. (RO)

Register 12.7: PCNT_INT_ENA_REG (0x0088)

(re
se

rve
d)

0x0000000

31 8

PCNT_
CNT_

TH
R_E

VENT_
U7_

IN
T_

ENA

0

7

PCNT_
CNT_

TH
R_E

VENT_
U6_

IN
T_

ENA

0

6

PCNT_
CNT_

TH
R_E

VENT_
U5_

IN
T_

ENA

0

5

PCNT_
CNT_

TH
R_E

VENT_
U4_

IN
T_

ENA

0

4

PCNT_
CNT_

TH
R_E

VENT_
U3_

IN
T_

ENA

0

3

PCNT_
CNT_

TH
R_E

VENT_
U2_

IN
T_

ENA

0

2

PCNT_
CNT_

TH
R_E

VENT_
U1_

IN
T_

ENA

0

1

PCNT_
CNT_

TH
R_E

VENT_
U0_

IN
T_

ENA

0

0

Reset

PCNT_CNT_THR_EVENT_Un_INT_ENA The interrupt enable bit for the

PCNT_CNT_THR_EVENT_Un_INT interrupt. (R/W)

Espressif Systems 258 ESP32 Technical Reference Manual V1.8

12. PULSE_CNT

Register 12.8: PCNT_INT_CLR_REG (0x008c)

(re
se

rve
d)

0x0000000

31 8

PCNT_
CNT_

TH
R_E

VENT_
U7_

IN
T_

CLR

0

7

PCNT_
CNT_

TH
R_E

VENT_
U6_

IN
T_

CLR

0

6

PCNT_
CNT_

TH
R_E

VENT_
U5_

IN
T_

CLR

0

5

PCNT_
CNT_

TH
R_E

VENT_
U4_

IN
T_

CLR

0

4

PCNT_
CNT_

TH
R_E

VENT_
U3_

IN
T_

CLR

0

3

PCNT_
CNT_

TH
R_E

VENT_
U2_

IN
T_

CLR

0

2

PCNT_
CNT_

TH
R_E

VENT_
U1_

IN
T_

CLR

0

1

PCNT_
CNT_

TH
R_E

VENT_
U0_

IN
T_

CLR

0

0

Reset

PCNT_CNT_THR_EVENT_Un_INT_CLR Set this bit to clear the PCNT_CNT_THR_EVENT_Un_INT

interrupt. (WO)

Register 12.9: PCNT_CTRL_REG (0x00b0)

(re
se

rve
d)

0x0000

31 17

(re
se

rve
d)

0

16

PCNT_
CNT_

PA
USE_U

7

0

15

PCNT_
PLU

S_C
NT_

RST_
U7

1

14

PCNT_
CNT_

PA
USE_U

6

0

13

PCNT_
PLU

S_C
NT_

RST_
U6

1

12

PCNT_
CNT_

PA
USE_U

5

0

11

PCNT_
PLU

S_C
NT_

RST_
U5

1

10

PCNT_
CNT_

PA
USE_U

4

0

9

PCNT_
PLU

S_C
NT_

RST_
U4

1

8

PCNT_
CNT_

PA
USE_U

3

0

7

PCNT_
PLU

S_C
NT_

RST_
U3

1

6

PCNT_
CNT_

PA
USE_U

2

0

5

PCNT_
PLU

S_C
NT_

RST_
U2

1

4

PCNT_
CNT_

PA
USE_U

1

0

3

PCNT_
PLU

S_C
NT_

RST_
U1

1

2

PCNT_
CNT_

PA
USE_U

0

0

1

PCNT_
PLU

S_C
NT_

RST_
U0

1

0

Reset

PCNT_CNT_PAUSE_Un Set this bit to freeze unit n’s counter. (R/W)

PCNT_PLUS_CNT_RST_Un Set this bit to clear unit n’s counter. (R/W)

Espressif Systems 259 ESP32 Technical Reference Manual V1.8

13. 64-BIT TIMERS

13. 64-bit Timers

13.1 Introduction

There are four general-purpose timers embedded in the ESP32. They are all 64-bit generic timers based on

16-bit prescalers and 64-bit auto-reload-capable up/downcounters.

The ESP32 contains two timer modules, each containing two timers. The two timers in a block are indicated by

an x in TIMGn_Tx; the blocks themselves are indicated by an n.

The timers feature:

• A 16-bit clock prescaler, from 2 to 65536

• A 64-bit time-base counter

• Configurable up/down time-base counter: incrementing or decrementing

• Halt and resume of time-base counter

• Auto-reload at alarm

• Software-controlled instant reload

• Level and edge interrupt generation

13.2 Functional Description

13.2.1 16-bit Prescaler

Each timer uses the APB clock (APB_CLK, normally 80 MHz) as the basic clock. This clock is then divided down

by a 16-bit precaler which generates the time-base counter clock (TB_clk). Every cycle of TB_clk causes the

time-base counter to increment or decrement by one. The timer must be disabled (TIMGn_Tx_EN is cleared)

before changing the prescaler divisor which is configured by TIMGn_Tx_DIVIDER register; changing it on an

enabled timer can lead to unpredictable results. The prescaler can divide the APB clock by a factor from 2 to

65536. Specifically, when TIMGn_Tx_DIVIDER is either 1 or 2, the clock divisor is 2; when TIMGn_Tx_DIVIDER is

0, the clock divisor is 65536. Any other value will cause the clock to be divided by exactly that value.

13.2.2 64-bit Time-base Counter

The 64-bit time-base counter can be configured to count either up or down, depending on whether

TIMGn_Tx_INCREASE is set or cleared, respectively. It supports both auto-reload and software instant reload.

An alarm event can be set when the counter reaches a value specified by the software.

Counting can be enabled and disabled by setting and clearing TIMGn_Tx_EN. Clearing this bit essentially freezes

the counter, causing it to neither count up nor count down; instead, it retains its value until TIMGn_Tx_EN is set

again. Reloading the counter when TIMGn_Tx_EN is cleared will change its value, but counting will not be

resumed until TIMGn_Tx_EN is set.

Software can set a new counter value by setting registers TIMGn_Tx_LOAD_LO and TIMGn_Tx_LOAD_HI to the

intended new value. The hardware will ignore these register settings until a reload; a reload will cause the

contents of these registers to be copied to the counter itself. A reload event can be triggered by an alarm

(auto-reload at alarm) or by software (software instant reload). To enable auto-reload at alarm, the register

Espressif Systems 260 ESP32 Technical Reference Manual V1.8

13. 64-BIT TIMERS

TIMGn_Tx_AUTORELOAD should be set. If auto-reload at alarm is not enabled, the time-base counter will

continue incrementing or decrementing after the alarm. To trigger a software instant reload, any value can be

written to the register TIMGn_Tx_LOAD_REG; this will cause the counter value to change instantly. Software can

also change the direction of the time-base counter instantly by changing the value of

TIMGn_Tx_INCREASE.

The time-base counter can also be read by software, but because the counter is 64-bit, the CPU can only get the

value as two 32-bit values, the counter value needs to be latched onto TIMGn_TxLO_REG and TIMGn_TxHI_REG

first. This is done by writing any value to TIMGn_TxUPDATE_REG; this will instantly latch the 64-bit timer value

onto the two registers. Software can then read them at any point in time. This approach stops the timer value

being read erroneously when a carry-over happens between reading the low and high word of the timer

value.

13.2.3 Alarm Generation

The timer can trigger an alarm, which can cause a reload and/or an interrupt to occur. The alarm is triggered

when the alarm registers TIMGn_Tx_ALARMLO_REG and TIMGn_Tx_ALARMHI_REG match the current timer

value. In order to simplify the scenario where these registers are set ’too late’ and the counter has already passed

these values, the alarm also triggers when the current timer value is higher (for an up-counting timer) or lower (for

a down-counting timer) than the current alarm value: if this is the case, the alarm will be triggered immediately

upon loading the alarm registers.

13.2.4 MWDT

Each timer module also contains a Main System Watchdog Timer and its associated registers. While these

registers are described here, their functional description can be found in the chapter entitled Watchdog

Timer.

13.2.5 Interrupts

• TIMGn_Tx_INT_WDT_INT: Generated when a watchdog timer interrupt stage times out.

• TIMGn_Tx_INT_T1_INT: An alarm event on timer 1 generates this interrupt.

• TIMGn_Tx_INT_T0_INT: An alarm event on timer 0 generates this interrupt.

13.3 Register Summary

Name Description TIMG0 TIMG1 Acc

Timer 0 configuration and control registers

TIMGn_T0CONFIG_REG Timer 0 configuration register 0x3FF5F000 0x3FF60000 R/W

TIMGn_T0LO_REG Timer 0 current value, low 32 bits 0x3FF5F004 0x3FF60004 RO

TIMGn_T0HI_REG Timer 0 current value, high 32 bits 0x3FF5F008 0x3FF60008 RO

TIMGn_T0UPDATE_REG
Write to copy current timer value to

TIMGn_T0_(LO/HI)_REG
0x3FF5F00C 0x3FF6000C WO

TIMGn_T0ALARMLO_REG Timer 0 alarm value, low 32 bits 0x3FF5F010 0x3FF60010 R/W

TIMGn_T0ALARMHI_REG Timer 0 alarm value, high bits 0x3FF5F014 0x3FF60014 R/W

TIMGn_T0LOADLO_REG Timer 0 reload value, low 32 bits 0x3FF5F018 0x3FF60018 R/W

Espressif Systems 261 ESP32 Technical Reference Manual V1.8

13. 64-BIT TIMERS

Name Description TIMG0 TIMG1 Acc

TIMGn_T0LOAD_REG
Write to reload timer from

TIMGn_T0_(LOADLOLOADHI)_REG
0x3FF5F020 0x3FF60020 WO

Timer 1 configuration and control registers

TIMGn_T1CONFIG_REG Timer 1 configuration register 0x3FF5F024 0x3FF60024 R/W

TIMGn_T1LO_REG Timer 1 current value, low 32 bits 0x3FF5F028 0x3FF60028 RO

TIMGn_T1HI_REG Timer 1 current value, high 32 bits 0x3FF5F02C 0x3FF6002C RO

TIMGn_T1UPDATE_REG
Write to copy current timer value to

TIMGn_T1_(LO/HI)_REG
0x3FF5F030 0x3FF60030 WO

TIMGn_T1ALARMLO_REG Timer 1 alarm value, low 32 bits 0x3FF5F034 0x3FF60034 R/W

TIMGn_T1ALARMHI_REG Timer 1 alarm value, high 32 bits 0x3FF5F038 0x3FF60038 R/W

TIMGn_T1LOADLO_REG Timer 1 reload value, low 32 bits 0x3FF5F03C 0x3FF6003C R/W

TIMGn_T1LOAD_REG
Write to reload timer from

TIMGn_T1_(LOADLOLOADHI)_REG
0x3FF5F044 0x3FF60044 WO

System watchdog timer configuration and control registers

TIMGn_Tx_WDTCONFIG0_REG Watchdog timer configuration register 0x3FF5F048 0x3FF60048 R/W

TIMGn_Tx_WDTCONFIG1_REG Watchdog timer prescaler register 0x3FF5F04C 0x3FF6004C R/W

TIMGn_Tx_WDTCONFIG2_REG Watchdog timer stage 0 timeout value 0x3FF5F050 0x3FF60050 R/W

TIMGn_Tx_WDTCONFIG3_REG Watchdog timer stage 1 timeout value 0x3FF5F054 0x3FF60054 R/W

TIMGn_Tx_WDTCONFIG4_REG Watchdog timer stage 2 timeout value 0x3FF5F058 0x3FF60058 R/W

TIMGn_Tx_WDTCONFIG5_REG Watchdog timer stage 3 timeout value 0x3FF5F05C 0x3FF6005C R/W

TIMGn_Tx_WDTFEED_REG Write to feed the watchdog timer 0x3FF5F060 0x3FF60060 WO

TIMGn_Tx_WDTWPROTECT_REG Watchdog write protect register 0x3FF5F064 0x3FF60064 R/W

Interrupt registers

TIMGn_Tx_INT_RAW_REG Raw interrupt status 0x3FF5F09C 0x3FF6009C RO

TIMGn_Tx_INT_ST_REG Masked interrupt status 0x3FF5F0A0 0x3FF600A0 RO

TIMGn_Tx_INT_ENA_REG Interrupt enable bits 0x3FF5F098 0x3FF60098 R/W

TIMGn_Tx_INT_CLR_REG Interrupt clear bits 0x3FF5F0A4 0x3FF600A4 WO

Espressif Systems 262 ESP32 Technical Reference Manual V1.8

13. 64-BIT TIMERS

13.4 Registers

Register 13.1: TIMGn_TxCONFIG_REG (x: 0-1) (0x0+0x24*x)

TIM
Gn

_T
x_

EN

0

31

TIM
Gn

_T
x_

IN
CREASE

1

30

TIM
Gn

_T
x_

AUTO
RELO

AD

1

29

TIM
Gn

_T
x_

DIVID
ER

0x00001

28 13

TIM
Gn

_T
x_

EDGE_IN
T_

EN

0

12

TIM
Gn

_T
x_

LE
VEL_

IN
T_

EN

0

11

TIM
Gn

_T
x_

ALA
RM

_E
N

0

10

Reset

TIMGn_Tx_EN When set, the timer x time-base counter is enabled. (R/W)

TIMGn_Tx_INCREASE When set, the timer x time-base counter will increment every clock tick. When

cleared, the timer x time-base counter will decrement. (R/W)

TIMGn_Tx_AUTORELOAD When set, timer x auto-reload at alarm is enabled. (R/W)

TIMGn_Tx_DIVIDER Timer x clock (Tx_clk) prescale value. (R/W)

TIMGn_Tx_EDGE_INT_EN When set, an alarm will generate an edge type interrupt. (R/W)

TIMGn_Tx_LEVEL_INT_EN When set, an alarm will generate a level type interrupt. (R/W)

TIMGn_Tx_ALARM_EN When set, the alarm is enabled. (R/W)

Register 13.2: TIMGn_TxLO_REG (x: 0-1) (0x4+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxLO_REG After writing to TIMGn_TxUPDATE_REG, the low 32 bits of the time-base counter

of timer x can be read here. (RO)

Register 13.3: TIMGn_TxHI_REG (x: 0-1) (0x8+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxHI_REG After writing to TIMGn_TxUPDATE_REG, the high 32 bits of the time-base counter

of timer x can be read here. (RO)

Espressif Systems 263 ESP32 Technical Reference Manual V1.8

13. 64-BIT TIMERS

Register 13.4: TIMGn_TxUPDATE_REG (x: 0-1) (0xC+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxUPDATE_REG Write any value to trigger a timer x time-base counter value update (timer x

current value will be stored in registers above). (WO)

Register 13.5: TIMGn_TxALARMLO_REG (x: 0-1) (0x10+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxALARMLO_REG Timer x alarm trigger time-base counter value, low 32 bits. (R/W)

Register 13.6: TIMGn_TxALARMHI_REG (x: 0-1) (0x14+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxALARMHI_REG Timer x alarm trigger time-base counter value, high 32 bits. (R/W)

Register 13.7: TIMGn_TxLOADLO_REG (x: 0-1) (0x18+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxLOADLO_REG Low 32 bits of the value that a reload will load onto timer x time-base

counter. (R/W)

Register 13.8: TIMGn_TxLOADHI_REG (x: 0-1) (0x1C+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxLOADHI_REG High 32 bits of the value that a reload will load onto timer x time-base

counter. (R/W)

Espressif Systems 264 ESP32 Technical Reference Manual V1.8

13. 64-BIT TIMERS

Register 13.9: TIMGn_TxLOAD_REG (x: 0-1) (0x20+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxLOAD_REG Write any value to trigger a timer x time-base counter reload. (WO)

Register 13.10: TIMGn_Tx_WDTCONFIG0_REG (0x0048)

TIM
Gn

_T
x_

W
DT_

EN

0

31

TIM
Gn

_T
x_

W
DT_

STG
0

0

30 29

TIM
Gn

_T
x_

W
DT_

STG
1

0

28 27

TIM
Gn

_T
x_

W
DT_

STG
2

0

26 25

TIM
Gn

_T
x_

W
DT_

STG
3

0

24 23

TIM
Gn

_T
x_

W
DT_

EDGE_IN
T_

EN

0

22

TIM
Gn

_T
x_

W
DT_

LE
VEL_

IN
T_

EN

0

21

TIM
Gn

_T
x_

W
DT_

CPU_R
ESET_

LE
NGTH

0x1

20 18

TIM
Gn

_T
x_

W
DT_

SYS_R
ESET_

LE
NGTH

0x1

17 15

TIM
Gn

_T
x_

W
DT_

FL
ASHBOOT_

M
OD_E

N

1

14

Reset

TIMGn_Tx_WDT_EN When set, MWDT is enabled. (R/W)

TIMGn_Tx_WDT_STG0 Stage 0 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system.

(R/W)

TIMGn_Tx_WDT_STG1 Stage 1 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system.

(R/W)

TIMGn_Tx_WDT_STG2 Stage 2 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system.

(R/W)

TIMGn_Tx_WDT_STG3 Stage 3 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system.

(R/W)

TIMGn_Tx_WDT_EDGE_INT_EN When set, an edge type interrupt will occur at the timeout of a stage

configured to generate an interrupt. (R/W)

TIMGn_Tx_WDT_LEVEL_INT_EN When set, a level type interrupt will occur at the timeout of a stage

configured to generate an interrupt. (R/W)

TIMGn_Tx_WDT_CPU_RESET_LENGTH CPU reset signal length selection. 0: 100 ns, 1: 200 ns,

2: 300 ns, 3: 400 ns, 4: 500 ns, 5: 800 ns, 6: 1.6 µs, 7: 3.2 µs. (R/W)

TIMGn_Tx_WDT_SYS_RESET_LENGTH System reset signal length selection. 0: 100 ns, 1: 200 ns,

2: 300 ns, 3: 400 ns, 4: 500 ns, 5: 800 ns, 6: 1.6 µs, 7: 3.2 µs. (R/W)

TIMGn_Tx_WDT_FLASHBOOT_MOD_EN When set, Flash boot protection is enabled. (R/W)

Espressif Systems 265 ESP32 Technical Reference Manual V1.8

13. 64-BIT TIMERS

Register 13.11: TIMGn_Tx_WDTCONFIG1_REG (0x004c)

TIM
Gn

_T
x_

W
DT_

CLK
_P

RESCALE

0x00001

31 16

Reset

TIMGn_Tx_WDT_CLK_PRESCALE MWDT clock prescale value. MWDT clock period = 12.5 ns *

TIMGn_Tx_WDT_CLK_PRESCALE. (R/W)

Register 13.12: TIMGn_Tx_WDTCONFIG2_REG (0x0050)

26000000

31 0

Reset

TIMGn_Tx_WDTCONFIG2_REG Stage 0 timeout value, in MWDT clock cycles. (R/W)

Register 13.13: TIMGn_Tx_WDTCONFIG3_REG (0x0054)

0x007FFFFFF

31 0

Reset

TIMGn_Tx_WDTCONFIG3_REG Stage 1 timeout value, in MWDT clock cycles. (R/W)

Register 13.14: TIMGn_Tx_WDTCONFIG4_REG (0x0058)

0x0000FFFFF

31 0

Reset

TIMGn_Tx_WDTCONFIG4_REG Stage 2 timeout value, in MWDT clock cycles. (R/W)

Register 13.15: TIMGn_Tx_WDTCONFIG5_REG (0x005c)

0x0000FFFFF

31 0

Reset

TIMGn_Tx_WDTCONFIG5_REG Stage 3 timeout value, in MWDT clock cycles. (R/W)

Espressif Systems 266 ESP32 Technical Reference Manual V1.8

13. 64-BIT TIMERS

Register 13.16: TIMGn_Tx_WDTFEED_REG (0x0060)

0x000000000

31 0

Reset

TIMGn_Tx_WDTFEED_REG Write any value to feed the MWDT. (WO)

Register 13.17: TIMGn_Tx_WDTWPROTECT_REG (0x0064)

0x050D83AA1

31 0

Reset

TIMGn_Tx_WDTWPROTECT_REG If the register contains a different value than its reset value, write

protection is enabled. (R/W)

Register 13.18: TIMGn_Tx_INT_ENA_REG (0x0098)

(re
se

rve
d)

0 0

31 3

TIM
Gn

_T
x_

IN
T_

W
DT_

IN
T_

ENA

0

2

TIM
Gn

_T
x_

IN
T_

T1
_IN

T_
ENA

0

1

TIM
Gn

_T
x_

IN
T_

T0
_IN

T_
ENA

0

0

Reset

TIMGn_Tx_INT_WDT_INT_ENA The interrupt enable bit for the TIMGn_Tx_INT_WDT_INT interrupt.

(R/W) (R/W)

TIMGn_Tx_INT_T1_INT_ENA The interrupt enable bit for the TIMGn_Tx_INT_T1_INT interrupt. (R/W)

(R/W)

TIMGn_Tx_INT_T0_INT_ENA The interrupt enable bit for the TIMGn_Tx_INT_T0_INT interrupt. (R/W)

(R/W)

Espressif Systems 267 ESP32 Technical Reference Manual V1.8

13. 64-BIT TIMERS

Register 13.19: TIMGn_Tx_INT_RAW_REG (0x009c)

(re
se

rve
d)

0 0

31 3

TIM
Gn

_T
x_

IN
T_

W
DT_

IN
T_

RAW

0

2

TIM
Gn

_T
x_

IN
T_

T1
_IN

T_
RAW

0

1

TIM
Gn

_T
x_

IN
T_

T0
_IN

T_
RAW

0

0

Reset

TIMGn_Tx_INT_WDT_INT_RAW The raw interrupt status bit for the TIMGn_Tx_INT_WDT_INT inter-

rupt. (RO)

TIMGn_Tx_INT_T1_INT_RAW The raw interrupt status bit for the TIMGn_Tx_INT_T1_INT interrupt.

(RO)

TIMGn_Tx_INT_T0_INT_RAW The raw interrupt status bit for the TIMGn_Tx_INT_T0_INT interrupt.

(RO)

Register 13.20: TIMGn_Tx_INT_ST_REG (0x00a0)

(re
se

rve
d)

0 0

31 3

TIM
Gn

_T
x_

IN
T_

W
DT_

IN
T_

ST

0

2

TIM
Gn

_T
x_

IN
T_

T1
_IN

T_
ST

0

1

TIM
Gn

_T
x_

IN
T_

T0
_IN

T_
ST

0

0

Reset

TIMGn_Tx_INT_WDT_INT_ST The masked interrupt status bit for the TIMGn_Tx_INT_WDT_INT in-

terrupt. (RO)

TIMGn_Tx_INT_T1_INT_ST The masked interrupt status bit for the TIMGn_Tx_INT_T1_INT interrupt.

(RO)

TIMGn_Tx_INT_T0_INT_ST The masked interrupt status bit for the TIMGn_Tx_INT_T0_INT interrupt.

(RO)

Espressif Systems 268 ESP32 Technical Reference Manual V1.8

13. 64-BIT TIMERS

Register 13.21: TIMGn_Tx_INT_CLR_REG (0x00a4)

(re
se

rve
d)

0 0

31 3

TIM
Gn

_T
x_

IN
T_

W
DT_

IN
T_

CLR

0

2

TIM
Gn

_T
x_

IN
T_

T1
_IN

T_
CLR

0

1

TIM
Gn

_T
x_

IN
T_

T0
_IN

T_
CLR

0

0

Reset

TIMGn_Tx_INT_WDT_INT_CLR Set this bit to clear the TIMGn_Tx_INT_WDT_INT interrupt. (WO)

TIMGn_Tx_INT_T1_INT_CLR Set this bit to clear the TIMGn_Tx_INT_T1_INT interrupt. (WO)

TIMGn_Tx_INT_T0_INT_CLR Set this bit to clear the TIMGn_Tx_INT_T0_INT interrupt. (WO)

Espressif Systems 269 ESP32 Technical Reference Manual V1.8

14. WATCHDOG TIMERS

14. Watchdog Timers

14.1 Introduction

The ESP32 has three watchdog timers: one in each of the two timer modules (called Main System Watchdog

Timer, or MWDT) and one in the RTC module (which is called the RTC Watchdog Timer, or RWDT). These

watchdog timers are intended to recover from an unforeseen fault, causing the application program to abandon

its normal sequence. A watchdog timer has four stages. Each stage may take one out of three or four actions

upon the expiry of a programmed period of time for this stage, unless the watchdog is fed or disabled. The

actions are: interrupt, CPU reset, core reset and system reset. Only the RWDT can trigger the system reset, and

is able to reset the entire chip and the main system including the RTC itself. A timeout value can be set for each

stage individually.

During flash boot, the RWDT and the first MWDT start automatically in order to detect and recover from booting

problems.

14.2 Features

• Four stages, each of which can be configured or disabled separately

• Programmable time period for each stage

• One out of three or four possible actions (interrupt, CPU reset, core reset and system reset) upon the expiry

of each stage

• 32-bit expiry counter

• Write protection, to prevent the RWDT and MWDT configuration from being inadvertently altered.

• Flash boot protection

If the boot process from an SPI flash does not complete within a predetermined period of time, the

watchdog will reboot the entire main system.

14.3 Functional Description

14.3.1 Clock

The RWDT is clocked from the RTC slow clock, which usually will be 32 KHz. The MWDT clock source is derived

from the APB clock via a pre-MWDT 16-bit configurable prescaler. For either watchdog, the clock source is fed

into the 32-bit expiry counter. When this counter reaches the timeout value of the current stage, the action

configured for the stage will execute, the expiry counter will be reset and the next stage will become active.

Espressif Systems 270 ESP32 Technical Reference Manual V1.8

14. WATCHDOG TIMERS

14.3.1.1 Operating Procedure

When a watchdog timer is enabled, it will proceed in loops from stage 0 to stage 3, then back to stage 0 and

start again. The expiry action and time period for each stage can be configured individually.

Every stage can be configured for one of the following actions when the expiry timer reaches the stage’s timeout

value:

• Trigger an interrupt

When the stage expires an interrupt is triggered.

• Reset a CPU core

When the stage expires the designated CPU core will be reset. MWDT0 CPU reset only resets the PRO

CPU. MWDT1 CPU reset only resets the APP CPU. The RWDT CPU reset can reset either of them, or both,

or none, depending on configuration.

• Reset the main system

When the stage expires, the main system, including the MWDTs, will be reset. In this article, the main

system includes the CPU and all peripherals. The RTC is an exception to this, and it will not be reset.

• Reset the main system and RTC

When the stage expires the main system and the RTC will both be reset. This action is only available in the

RWDT.

• Disabled

This stage will have no effects on the system.

When software feeds the watchdog timer, it returns to stage 0 and its expiry counter restarts from 0.

14.3.1.2 Write Protection

Both the MWDTs, as well as the RWDT, can be protected from accidental writing. To accomplish this, they have

a write-key register (TIMERS_WDT_WKEY for the MWDT, RTC_CNTL_WDT_WKEY for the RWDT.) On reset,

these registers are initialized to the value 0x50D83AA1. When the value in this register is changed from

0x50D83AA1, write protection is enabled. Writes to any WDT register, including the feeding register (but

excluding the write-key register itself), are ignored. The recommended procedure for accessing a WDT is:

1. Disable the write protection

2. Make the required modification or feed the watchdog

3. Re-enable the write protection

14.3.1.3 Flash Boot Protection

During flash booting, the MWDT in timer group 0 (TIMG0), as well as the RWDT, are automatically enabled. Stage

0 for the enabled MWDT is automatically configured to reset the system upon expiry; stage 0 for the RWDT resets

the RTC when it expires. After booting, the register TIMERS_WDT_FLASHBOOT_MOD_EN should be cleared to

stop the flash boot protection procedure for the MWDT, and RTC_CNTL_WDT_FLASHBOOT_MOD_EN should

be cleared to do the same for the RWDT. After this, the MWDT and RWDT can be configured by software.

Espressif Systems 271 ESP32 Technical Reference Manual V1.8

14. WATCHDOG TIMERS

14.3.1.4 Registers

The MWDT registers are part of the timer submodule and are described in the Timer Registers section. The

RWDT registers are part of the RTC submodule and are described in the RTC Registers section.

Espressif Systems 272 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

15. eFuse Controller

15.1 Introduction

The ESP32 has a number of eFuses which store system parameters. Fundamentally, an eFuse is a single bit of

non-volatile memory with the restriction that once an eFuse bit is programmed to 1, it can never be reverted to 0.

Software can instruct the eFuse Controller to program each bit for each system parameter as needed.

Some of these system parameters can be read by software using the eFuse Controller. Some of the system

parameters are also directly used by hardware modules.

15.2 Features

• Configuration of 26 system parameters

• Optional write-protection

• Optional software-read-protection

15.3 Functional Description

15.3.1 Structure

Twenty-six system parameters with different bit width are stored in the eFuses. The name of each system

parameter and the corresponding bit width are shown in Table 48. Among those parameters, efuse_wr_disable,

efuse_rd_disable, and coding_scheme are directly used by the eFuse Controller.

Table 48: System Parameter

Program Software-Read

-Protection by -Protection byName Bit width

efuse_wr_disable efuse_rd_disable

Description

efuse_wr_disable 16 1 - controls the eFuse Controller

efuse_rd_disable 4 0 - controls the eFuse Controller

flash_crypt_cnt 8 2 -
governs the flash encryption/

decryption

WIFI_MAC_Address 56 3 - Wi-Fi MAC address and CRC

SPI_pad_config_hd 5 3 -
configures the SPI I/O to a cer-

tain pad

chip_version 4 3 - chip version

XPD_SDIO_REG 1 5 - powers up the flash regulator

SDIO_TIEH 1 5 -

configures the flash regulator

voltage: set to 1 for 3.3 V

and set to 0 for 1.8 V

sdio_force 1 5 -

determines whether

XPD_SDIO_REG

and SDIO_TIEH can

control the flash regulator

Espressif Systems 273 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

Program Software-Read

-Protection by -Protection byName Bit width

efuse_wr_disable efuse_rd_disable

Description

SPI_pad_config_clk 5 6 -
configures the SPI I/O to a cer-

tain pad

SPI_pad_config_q 5 6 -
configures the SPI I/O to a cer-

tain pad

SPI_pad_config_d 5 6 -
configures the SPI I/O to a cer-

tain pad

SPI_pad_config_cs0 5 6 -
configures the SPI I/O to a cer-

tain pad

flash_crypt_config 4 10 3
governs flash encryption/

decryption

coding_scheme 2 10 3 controls the eFuse Controller

console_debug_disable 1 15 -
disables serial output from

the BootROM when set to 1

abstract_done_0 1 12 -
determines the status of

Secure Boot

abstract_done_1 1 13 -
determines the status of

Secure Boot

JTAG_disable 1 14 -

disables access to the

JTAG controllers so as to

effectively disable external

use of JTAG

download_dis_encrypt 1 15 -
governs flash encryption/

decryption

download_dis_decrypt 1 15 -
governs flash encryption/

decryption

download_dis_cache 1 15 -
disables cache when boot

mode is the Download Mode

key_status 1 10 3
determines whether BLOCK3

is deployed for user purposes

BLOCK1 256/192/128 7 0
governs flash encryption/

decryption

BLOCK2 256/192/128 8 1 key for Secure Boot

BLOCK3 256/192/128 9 2 key for user purposes

15.3.1.1 System Parameter efuse_wr_disable

The system parameter efuse_wr_disable determines whether all of the system parameters are write-protected.

Since efuse_wr_disable is a system parameter as well, it also determines whether it itself is

write-protected.

If a system parameter is not write-protected, its unprogrammed bits can be programmed from 0 to 1. The bits

previously programmed to 1 will remain 1. When a system parameter is write-protected, none of its bits can be

programmed: The unprogrammed bits will always remain 0 and the programmed bits will always remain 1.

Espressif Systems 274 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

The write-protection status of each system parameter corresponds to a bit in efuse_wr_disable. When the

corresponding bit is set to 0, the system parameter is not write-protected. When the corresponding bit is set to

1, the system parameter is write-protected. If a system parameter is already write-protected, it will remain

write-protected. The column entitled ”Program-Protection by efuse_wr_disable” in Table 48 lists the

corresponding bits that determine the write-protection status of each system parameter.

15.3.1.2 System Parameter efuse_rd_disable

Of the 26 system parameters, 20 are not constrained by software-read-protection. These are marked by ”-” in

the column entitled ”Software-Read-Protection by efuse_rd_disable” in Table 48. Those system parameters,

some of which are used by software and hardware modules at the same time, can be read by software via the

eFuse Controller at any time.

When not software-read-protected, the other six system parameters can both be read by software and used by

hardware modules. When they are software-read-protected, they can only be used by the hardware

modules.

The column ”Software-Read-Protection by efuse_rd_disable” in Table 48 lists the corresponding bits in

efuse_rd_disable that determine the software read-protection status of the six system parameters. If a bit in the

system parameter efuse_rd_disable is 0, the system parameter controlled by the bit is not

software-read-protected. If a bit in the system parameter efuse_rd_disable is 1, the system parameter controlled

by the bit is software-read-protected. If a system parameter is software-read-protected, it will remain in this

state.

15.3.1.3 System Parameter coding_scheme

As Table 48 shows, only three system parameters, BLOCK1, BLOCK2, and BLOCK3, have variable bit width.

Their bit width is controlled by another system parameter, coding_scheme. Despite their variable bit width,

BLOCK1, BLOCK2, and BLOCK3 are assigned a fixed number of bits in eFuse. There is an encoding mapping

between these three system parameters and their corresponding stored values in eFuse. For details please see

Table 49.

Table 49: BLOCK1/2/3 Encoding

coding_scheme[1:0] Width of BLOCK1/2/3 Coding scheme Number of bits in eFuse

00/11 256 None 256

01 192 3/4 256

10 128 Repeat 256

The three coding schemes are explained as follows:

• BLOCKN represents any of the following three system parameters: BLOCK1, BLOCK2 or BLOCK3.

• BLOCKN [255 : 0], BLOCKN [191 : 0], and BLOCKN [127 : 0] represent each bit of the three system

parameters in the three encoding schemes.

• e
BLOCKN [255 : 0] represents each corresponding bit of those system parameters in eFuse after being

encoded.

Espressif Systems 275 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

None
e
BLOCKN [255 : 0] = BLOCKN [255 : 0]

3/4

BLOCKN j
i [7 : 0] = BLOCKN [48i+ 8j + 7 : 48i+ 8j] i ∈ {0, 1, 2, 3} j ∈ {0, 1, 2, 3, 4, 5}

eBLOCKN j
i [7 : 0] = eBLOCKN [64i+ 8j + 7 : 64i+ 8j] i ∈ {0, 1, 2, 3} j ∈ {0, 1, 2, 3, 4, 5, 6, 7}

eBLOCKN j
i [7 : 0] =

BLOCKN j
i [7 : 0] j ∈ {0, 1, 2, 3, 4, 5}

BLOCKN0
i [7 : 0]⊕BLOCKN1

i [7 : 0]

⊕BLOCKN2
i [7 : 0]⊕BLOCKN3

i [7 : 0]

⊕BLOCKN4
i [7 : 0]⊕BLOCKN5

i [7 : 0]

j ∈ {6}

5∑
l=0

(l + 1)

7∑
k=0

BLOCKN l
i [k] j ∈ {7}

i ∈ {0, 1, 2, 3}

⊕ means bitwise XOR∑
and + mean summation

Repeat
e
BLOCKN [255 : 128] =

e
BLOCKN [127 : 0] = BLOCKN [127 : 0]

15.3.2 Programming of System Parameters

The programming of variable-length system parameters BLOCK1, BLOCK2, and BLOCK3 is different from that of

the fixed-length system parameters. We program the e
BLOCKN [255 : 0] value of encoded system

parameters BLOCK1, BLOCK2, and BLOCK3 instead of directly programming the system parameters.

The bit width of e
BLOCKN [255 : 0] is always 256. Fixed-length system parameters, in contrast, are

programmed without encoding them first.

Each bit of the 23 fixed-length system parameters and the three encoded variable-length system parameters

corresponds to a program register bit, as shown in Table 50. The register bits will be used when programming

system parameters.

Table 50: Program Register

System parameter Register

Name Width Bit Name Bit

efuse_wr_disable 16 [15:0]

EFUSE_BLK0_WDATA0_REG

[15:0]

efuse_rd_disable 4 [3:0] [19:16]

flash_crypt_cnt 8 [7:0] [27:20]

WIFI_MAC_Address 56
[31:0] EFUSE_BLK0_WDATA1_REG [31:0]

[55:32] EFUSE_BLK0_WDATA2_REG [23:0]

SPI_pad_config_hd 5 [4:0]
EFUSE_BLK0_WDATA3_REG

[8:4]

chip_version 4 [3:0] [12:9]

XPD_SDIO_REG 1 [0]

EFUSE_BLK0_WDATA4_REG

[14]

SDIO_TIEH 1 [0] [15]

sdio_force 1 [0] [16]

Espressif Systems 276 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

System parameter Register

Name Width Bit Name Bit

SPI_pad_config_clk 5 [4:0]

EFUSE_BLK0_WDATA5_REG

[4:0]

SPI_pad_config_q 5 [4:0] [9:5]

SPI_pad_config_d 5 [4:0] [14:10]

SPI_pad_config_cs0 5 [4:0] [19:15]

flash_crypt_config 4 [3:0] [31:28]

coding_scheme 2 [1:0]

EFUSE_BLK0_WDATA6_REG

[1:0]

console_debug_disable 1 [0] [2]

abstract_done_0 1 [0] [4]

abstract_done_1 1 [0] [5]

JTAG_disable 1 [0] [6]

download_dis_encrypt 1 [0] [7]

download_dis_decrypt 1 [0] [8]

download_dis_cache 1 [0] [9]

key_status 1 [0] [10]

BLOCK1 256/192/128

[31:0] EFUSE_BLK1_WDATA0_REG [31:0]

[63:32] EFUSE_BLK1_WDATA1_REG [31:0]

[95:64] EFUSE_BLK1_WDATA2_REG [31:0]

[127:96] EFUSE_BLK1_WDATA3_REG [31:0]

[159:128] EFUSE_BLK1_WDATA4_REG [31:0]

[191:160] EFUSE_BLK1_WDATA5_REG [31:0]

[223:192] EFUSE_BLK1_WDATA6_REG [31:0]

[255:224] EFUSE_BLK1_WDATA7_REG [31:0]

BLOCK2 256/192/128

[31:0] EFUSE_BLK2_WDATA0_REG [31:0]

[63:32] EFUSE_BLK2_WDATA1_REG [31:0]

[95:64] EFUSE_BLK2_WDATA2_REG [31:0]

[127:96] EFUSE_BLK2_WDATA3_REG [31:0]

[159:128] EFUSE_BLK2_WDATA4_REG [31:0]

[191:160] EFUSE_BLK2_WDATA5_REG [31:0]

[223:192] EFUSE_BLK2_WDATA6_REG [31:0]

[255:224] EFUSE_BLK2_WDATA7_REG [31:0]

BLOCK3 256/192/128

[31:0] EFUSE_BLK3_WDATA0_REG [31:0]

[63:32] EFUSE_BLK3_WDATA1_REG [31:0]

[95:64] EFUSE_BLK3_WDATA2_REG [31:0]

[127:96] EFUSE_BLK3_WDATA3_REG [31:0]

[159:128] EFUSE_BLK3_WDATA4_REG [31:0]

[191:160] EFUSE_BLK3_WDATA5_REG [31:0]

[223:192] EFUSE_BLK3_WDATA6_REG [31:0]

[255:224] EFUSE_BLK3_WDATA7_REG [31:0]

The process of programming system parameters is as follows:

1. Configure EFUSE_CLK_SEL0 bit, EFUSE_CLK_SEL1 bit of register EFUSE_CLK, and

EFUSE_DAC_CLK_DIV bit of register EFUSE_DAC_CONF.

2. Set the corresponding register bit of the system parameter bit to be programmed to 1.

Espressif Systems 277 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

3. Write 0x5A5A into register EFUSE_CONF.

4. Write 0x2 into register EFUSE_CMD.

5. Poll register EFUSE_CMD until it is 0x0, or wait for a program-done interrupt.

6. Write 0x5AA5 into register EFUSE_CONF.

7. Write 0x1 into register EFUSE_CMD.

8. Poll register EFUSE_CMD until it is 0x0, or wait for a read-done interrupt.

9. Set the corresponding register bit of the programmed bit to 0.

The configuration values of the EFUSE_CLK_SEL0 bit, EFUSE_CLK_SEL1 bit of register EFUSE_CLK, and the

EFUSE_DAC_CLK_DIV bit of register EFUSE_DAC_CONF are based on the current APB_CLK frequency, as is

shown in Table 51.

Table 51: Timing Configuration

Register

Configuration Value APB_CLK Frequency
26 MHz 40 MHz 80 MHz

EFUSE_CLK
EFUSE_CLK_SEL0[7:0] 8’d250 8’d160 8’d80

EFUSE_CLK_SEL1[7:0] 8’d255 8’d255 8’d128

EFUSE_DAC_CONF EFUSE_DAC_CLK_DIV[7:0] 8’d52 8’d80 8’d160

The two methods to identify the generation of program/read-done interrupts are as follows:

Method One:

1. Poll bit 1/0 in register EFUSE_INT_RAW until bit 1/0 is 1, which represents the generation of an

program/read-done interrupt.

2. Set the bit 1/0 in register EFUSE_INT_CLR to 1 to clear the program/read-done interrupts.

Method Two:

1. Set bit 1/0 in register EFUSE_INT_ENA to 1 to enable eFuse Controller to post a program/read-done

interrupt.

2. Configure Interrupt Matrix to enable the CPU to respond to an EFUSE_INT interrupt.

3. A program/read-done interrupt is generated.

4. Read bit 1/0 in register EFUSE_INT_ST to identify the generation of the program/read-done interrupt.

5. Set bit 1/0 in register EFUSE_INT_CLR to 1 to clear the program/read-done interrupt.

The programming of different system parameters and even the programming of different bits of the same system

parameter can be completed separately in multiple programmings. It is, however, recommended that users

minimize programming cycles, and program all the bits that need to be programmed in a system parameter in

one programming action. In addition, after all system parameters controlled by a certain bit of efuse_wr_disable

are programmed, that bit should be immediately programmed. The programming of system parameters

controlled by a certain bit of efuse_wr_disable, and the programming of that bit can even be completed at the

same time. Repeated programming of programmed bits is strictly forbidden.

Espressif Systems 278 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

15.3.3 Software Reading of System Parameters

Each bit of the 23 fixed-length system parameters and the three variable-length system parameters corresponds

to a software-read register bit, as shown in Table 52. Software can use the value of each system parameter by

reading the value in the corresponding register.

The bit width of system parameters BLOCK1, BLOCK2, and BLOCK3 is variable. Although 256 register bits have

been assigned to each of the three parameters, as shown in Table 52, some of the 256 register bits are useless in

the 3/4 coding and the Repeat coding scheme. In the None coding scheme, the corresponding register bit of

each bit of BLOCKN [255 : 0] is used. In the 3/4 coding scheme, only the corresponding register bits of

BLOCKN [191 : 0] are useful. In Repeat coding scheme, only the corresponding bits of BLOCKN [127 : 0] are

useful. In different coding schemes, the values of useless register bits read by software are invalid. The values of

useful register bits read by software are the system parameters BLOCK1, BLOCK2, and BLOCK3

themselves instead of their values after being encoded.

Table 52: Software Read Register

System parameter Register

Name Bit Width Bit Name Bit

efuse_wr_disable 16 [15:0]

EFUSE_BLK0_RDATA0_REG

[15:0]

efuse_rd_disable 4 [3:0] [19:16]

flash_crypt_cnt 8 [7:0] [27:20]

WIFI_MAC_Address 56
[31:0] EFUSE_BLK0_RDATA1_REG [31:0]

[55:32] EFUSE_BLK0_RDATA2_REG [23:0]

SPI_pad_config_hd 5 [4:0]
EFUSE_BLK0_RDATA3_REG

[8:4]

chip_version 4 [3:0] [12:9]

XPD_SDIO_REG 1 [0]

EFUSE_BLK0_RDATA4_REG

[14]

SDIO_TIEH 1 [0] [15]

sdio_force 1 [0] [16]

SPI_pad_config_clk 5 [4:0]

EFUSE_BLK0_RDATA5_REG

[4:0]

SPI_pad_config_q 5 [4:0] [9:5]

SPI_pad_config_d 5 [4:0] [14:10]

SPI_pad_config_cs0 5 [4:0] [19:15]

flash_crypt_config 4 [3:0] [31:28]

coding_scheme 2 [1:0]

EFUSE_BLK0_RDATA6_REG

[1:0]

console_debug_disable 1 [0] [2]

abstract_done_0 1 [0] [4]

abstract_done_1 1 [0] [5]

JTAG_disable 1 [0] [6]

download_dis_encrypt 1 [0] [7]

download_dis_decrypt 1 [0] [8]

download_dis_cache 1 [0] [9]

key_status 1 [0] [10]

Espressif Systems 279 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

System parameter Register

Name Bit Width Bit Name Bit

BLOCK1 256/192/128

[31:0] EFUSE_BLK1_RDATA0_REG [31:0]

[63:32] EFUSE_BLK1_RDATA1_REG [31:0]

[95:64] EFUSE_BLK1_RDATA2_REG [31:0]

[127:96] EFUSE_BLK1_RDATA3_REG [31:0]

[159:128] EFUSE_BLK1_RDATA4_REG [31:0]

[191:160] EFUSE_BLK1_RDATA5_REG [31:0]

[223:192] EFUSE_BLK1_RDATA6_REG [31:0]

[255:224] EFUSE_BLK1_RDATA7_REG [31:0]

BLOCK2 256/192/128

[31:0] EFUSE_BLK2_RDATA0_REG [31:0]

[63:32] EFUSE_BLK2_RDATA1_REG [31:0]

[95:64] EFUSE_BLK2_RDATA2_REG [31:0]

[127:96] EFUSE_BLK2_RDATA3_REG [31:0]

[159:128] EFUSE_BLK2_RDATA4_REG [31:0]

[191:160] EFUSE_BLK2_RDATA5_REG [31:0]

[223:192] EFUSE_BLK2_RDATA6_REG [31:0]

[255:224] EFUSE_BLK2_RDATA7_REG [31:0]

BLOCK3 256/192/128

[31:0] EFUSE_BLK3_RDATA0_REG [31:0]

[63:32] EFUSE_BLK3_RDATA1_REG [31:0]

[95:64] EFUSE_BLK3_RDATA2_REG [31:0]

[127:96] EFUSE_BLK3_RDATA3_REG [31:0]

[159:128] EFUSE_BLK3_RDATA4_REG [31:0]

[191:160] EFUSE_BLK3_RDATA5_REG [31:0]

[223:192] EFUSE_BLK3_RDATA6_REG [31:0]

[255:224] EFUSE_BLK3_RDATA7_REG [31:0]

15.3.4 The Use of System Parameters by Hardware Modules

Hardware modules are directly hardwired to the ESP32 in order to use the system parameters. Software cannot

change this behaviour. Hardware modules use the decoded values of system parameters BLOCK1,

BLOCK2, and BLOCK3, not their encoded values.

15.3.5 Interrupts

• EFUSE_PGM_DONE_INT: Triggered when eFuse programming has finished.

• EFUSE_READ_DONE_INT: Triggered when eFuse reading has finished.

15.4 Register Summary

Name Description Address Access

eFuse data read registers

EFUSE_BLK0_RDATA0_REG Returns data word 0 in eFuse BLOCK 0 0x3FF5A000 RO

EFUSE_BLK0_RDATA1_REG Returns data word 1 in eFuse BLOCK 0 0x3FF5A004 RO

EFUSE_BLK0_RDATA2_REG Returns data word 2 in eFuse BLOCK 0 0x3FF5A008 RO

Espressif Systems 280 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

Name Description Address Access

EFUSE_BLK0_RDATA3_REG Returns data word 3 in eFuse BLOCK 0 0x3FF5A00C RO

EFUSE_BLK0_RDATA4_REG Returns data word 4 in eFuse BLOCK 0 0x3FF5A010 RO

EFUSE_BLK0_RDATA5_REG Returns data word 5 in eFuse BLOCK 0 0x3FF5A014 RO

EFUSE_BLK0_RDATA6_REG Returns data word 6 in eFuse BLOCK 0 0x3FF5A018 RO

EFUSE_BLK1_RDATA0_REG Returns data word 0 in eFuse BLOCK 1 0x3FF5A038 RO

EFUSE_BLK1_RDATA1_REG Returns data word 1 in eFuse BLOCK 1 0x3FF5A03C RO

EFUSE_BLK1_RDATA2_REG Returns data word 2 in eFuse BLOCK 1 0x3FF5A040 RO

EFUSE_BLK1_RDATA3_REG Returns data word 3 in eFuse BLOCK 1 0x3FF5A044 RO

EFUSE_BLK1_RDATA4_REG Returns data word 4 in eFuse BLOCK 1 0x3FF5A048 RO

EFUSE_BLK1_RDATA5_REG Returns data word 5 in eFuse BLOCK 1 0x3FF5A04C RO

EFUSE_BLK1_RDATA6_REG Returns data word 6 in eFuse BLOCK 1 0x3FF5A050 RO

EFUSE_BLK1_RDATA7_REG Returns data word 7 in eFuse BLOCK 1 0x3FF5A054 RO

EFUSE_BLK2_RDATA0_REG Returns data word 0 in eFuse BLOCK 2 0x3FF5A058 RO

EFUSE_BLK2_RDATA1_REG Returns data word 1 in eFuse BLOCK 2 0x3FF5A05C RO

EFUSE_BLK2_RDATA2_REG Returns data word 2 in eFuse BLOCK 2 0x3FF5A060 RO

EFUSE_BLK2_RDATA3_REG Returns data word 3 in eFuse BLOCK 2 0x3FF5A064 RO

EFUSE_BLK2_RDATA4_REG Returns data word 4 in eFuse BLOCK 2 0x3FF5A068 RO

EFUSE_BLK2_RDATA5_REG Returns data word 5 in eFuse BLOCK 2 0x3FF5A06C RO

EFUSE_BLK2_RDATA6_REG Returns data word 6 in eFuse BLOCK 2 0x3FF5A070 RO

EFUSE_BLK2_RDATA7_REG Returns data word 7 in eFuse BLOCK 2 0x3FF5A074 RO

EFUSE_BLK3_RDATA0_REG Returns data word 0 in eFuse BLOCK 3 0x3FF5A078 RO

EFUSE_BLK3_RDATA1_REG Returns data word 1 in eFuse BLOCK 3 0x3FF5A07C RO

EFUSE_BLK3_RDATA2_REG Returns data word 2 in eFuse BLOCK 3 0x3FF5A080 RO

EFUSE_BLK3_RDATA3_REG Returns data word 3 in eFuse BLOCK 3 0x3FF5A084 RO

EFUSE_BLK3_RDATA4_REG Returns data word 4 in eFuse BLOCK 3 0x3FF5A088 RO

EFUSE_BLK3_RDATA5_REG Returns data word 5 in eFuse BLOCK 3 0x3FF5A08C RO

EFUSE_BLK3_RDATA6_REG Returns data word 6 in eFuse BLOCK 3 0x3FF5A090 RO

EFUSE_BLK3_RDATA7_REG Returns data word 7 in eFuse BLOCK 3 0x3FF5A094 RO

eFuse data write registers

EFUSE_BLK0_WDATA0_REG Writes data to word 0 in eFuse BLOCK 0 0x3FF5A01c R/W

EFUSE_BLK0_WDATA1_REG Writes data to word 1 in eFuse BLOCK 0 0x3FF5A020 R/W

EFUSE_BLK0_WDATA2_REG Writes data to word 2 in eFuse BLOCK 0 0x3FF5A024 R/W

EFUSE_BLK0_WDATA3_REG Writes data to word 3 in eFuse BLOCK 0 0x3FF5A028 R/W

EFUSE_BLK0_WDATA4_REG Writes data to word 4 in eFuse BLOCK 0 0x3FF5A02c R/W

EFUSE_BLK0_WDATA5_REG Writes data to word 5 in eFuse BLOCK 0 0x3FF5A030 R/W

EFUSE_BLK0_WDATA6_REG Writes data to word 6 in eFuse BLOCK 0 0x3FF5A034 R/W

EFUSE_BLK1_WDATA0_REG Writes data to word 0 in eFuse BLOCK 1 0x3FF5A098 R/W

EFUSE_BLK1_WDATA1_REG Writes data to word 1 in eFuse BLOCK 1 0x3FF5A09c R/W

EFUSE_BLK1_WDATA2_REG Writes data to word 2 in eFuse BLOCK 1 0x3FF5A0a0 R/W

EFUSE_BLK1_WDATA3_REG Writes data to word 3 in eFuse BLOCK 1 0x3FF5A0a4 R/W

EFUSE_BLK1_WDATA4_REG Writes data to word 4 in eFuse BLOCK 1 0x3FF5A0a8 R/W

EFUSE_BLK1_WDATA5_REG Writes data to word 5 in eFuse BLOCK 1 0x3FF5A0ac R/W

EFUSE_BLK1_WDATA6_REG Writes data to word 6 in eFuse BLOCK 1 0x3FF5A0b0 R/W

EFUSE_BLK1_WDATA7_REG Writes data to word 7 in eFuse BLOCK 1 0x3FF5A0b4 R/W

Espressif Systems 281 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

Name Description Address Access

EFUSE_BLK2_WDATA0_REG Writes data to word 0 in eFuse BLOCK 2 0x3FF5A0b8 R/W

EFUSE_BLK2_WDATA1_REG Writes data to word 1 in eFuse BLOCK 2 0x3FF5A0bc R/W

EFUSE_BLK2_WDATA2_REG Writes data to word 2 in eFuse BLOCK 2 0x3FF5A0c0 R/W

EFUSE_BLK2_WDATA3_REG Writes data to word 3 in eFuse BLOCK 2 0x3FF5A0c4 R/W

EFUSE_BLK2_WDATA4_REG Writes data to word 4 in eFuse BLOCK 2 0x3FF5A0c8 R/W

EFUSE_BLK2_WDATA5_REG Writes data to word 5 in eFuse BLOCK 2 0x3FF5A0cc R/W

EFUSE_BLK2_WDATA6_REG Writes data to word 6 in eFuse BLOCK 2 0x3FF5A0d0 R/W

EFUSE_BLK2_WDATA7_REG Writes data to word 7 in eFuse BLOCK 2 0x3FF5A0d4 R/W

EFUSE_BLK3_WDATA0_REG Writes data to word 0 in eFuse BLOCK 3 0x3FF5A0d8 R/W

EFUSE_BLK3_WDATA1_REG Writes data to word 1 in eFuse BLOCK 3 0x3FF5A0dc R/W

EFUSE_BLK3_WDATA2_REG Writes data to word 2 in eFuse BLOCK 3 0x3FF5A0e0 R/W

EFUSE_BLK3_WDATA3_REG Writes data to word 3 in eFuse BLOCK 3 0x3FF5A0e4 R/W

EFUSE_BLK3_WDATA4_REG Writes data to word 4 in eFuse BLOCK 3 0x3FF5A0e8 R/W

EFUSE_BLK3_WDATA5_REG Writes data to word 5 in eFuse BLOCK 3 0x3FF5A0ec R/W

EFUSE_BLK3_WDATA6_REG Writes data to word 6 in eFuse BLOCK 3 0x3FF5A0f0 R/W

EFUSE_BLK3_WDATA7_REG Writes data to word 7 in eFuse BLOCK 3 0x3FF5A0f4 R/W

Control registers

EFUSE_CLK_REG Timing configuration register 0x3FF5A0F8 R/W

EFUSE_CONF_REG Opcode register 0x3FF5A0FC R/W

EFUSE_CMD_REG Read/write command register 0x3FF5A104 R/W

Interrupt registers

EFUSE_INT_RAW_REG Raw interrupt status 0x3FF5A108 RO

EFUSE_INT_ST_REG Masked interrupt status 0x3FF5A10C RO

EFUSE_INT_ENA_REG Interrupt enable bits 0x3FF5A110 R/W

EFUSE_INT_CLR_REG Interrupt clear bits 0x3FF5A114 WO

Misc registers

EFUSE_DAC_CONF_REG Efuse timing configuration 0x3FF5A118 R/W

EFUSE_DEC_STATUS_REG Status of 3/4 coding scheme 0x3FF5A11C RO

Espressif Systems 282 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

15.5 Registers

Register 15.1: EFUSE_BLK0_RDATA0_REG (0x000)

(re
se

rve
d)

0 0 0 0

31 28

EFU
SE_R

D_F
LA

SH_C
RYPT_

CNT

0 0 0 0 0 0 0 0

27 20

EFU
SE_R

D_E
FU

SE_R
D_D

IS

0 0 0 0

19 16

EFU
SE_R

D_E
FU

SE_W
R_D

IS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

EFUSE_RD_FLASH_CRYPT_CNT This field returns the value of flash_crypt_cnt. (RO)

EFUSE_RD_EFUSE_RD_DIS This field returns the value of efuse_rd_disable. (RO)

EFUSE_RD_EFUSE_WR_DIS This field returns the value of efuse_wr_disable. (RO)

Register 15.2: EFUSE_BLK0_RDATA1_REG (0x004)

0 0

31 0

Reset

EFUSE_BLK0_RDATA1_REG This field returns the value of the lower 32 bits of WIFI_MAC_Address.

(RO)

Register 15.3: EFUSE_BLK0_RDATA2_REG (0x008)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

EFU
SE_R

D_W
IFI

_M
AC_C

RC_H
IG

H

0 0

23 0

Reset

EFUSE_RD_WIFI_MAC_CRC_HIGH This field returns the value of the higher 24 bits of

WIFI_MAC_Address. (RO)

Espressif Systems 283 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

Register 15.4: EFUSE_BLK0_RDATA3_REG (0x00c)

(re
se

rve
d)

0 0

31 9

EFU
SE_R

D_S
PI_P

AD_C
ONFIG

_H
D

0 0 0 0 0

8 4

(re
se

rve
d)

0 0 0 0

7 4

Reset

EFUSE_RD_SPI_PAD_CONFIG_HD This field returns the value of SPI_pad_config_hd. (RO)

Register 15.5: EFUSE_BLK0_RDATA4_REG (0x010)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

EFU
SE_R

D_S
DIO

_F
ORCE

0

16

EFU
SE_R

D_S
DIO

_T
IEH

0

15

EFU
SE_R

D_X
PD_S

DIO

0

14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14

Reset

EFUSE_RD_SDIO_FORCE This field returns the value of sdio_force. (RO)

EFUSE_RD_SDIO_TIEH This field returns the value of SDIO_TIEH. (RO)

EFUSE_RD_XPD_SDIO This field returns the value of XPD_SDIO_REG. (RO)

Espressif Systems 284 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

Register 15.6: EFUSE_BLK0_RDATA5_REG (0x014)

EFU
SE_R

D_F
LA

SH_C
RYPT_

CONFIG

0 0 0 0

31 28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

EFU
SE_R

D_S
PI_P

AD_C
ONFIG

_C
S0

0 0 0 0 0

19 15

EFU
SE_R

D_S
PI_P

AD_C
ONFIG

_D

0 0 0 0 0

14 10

EFU
SE_R

D_S
PI_P

AD_C
ONFIG

_Q

0 0 0 0 0

9 5

EFU
SE_R

D_S
PI_P

AD_C
ONFIG

_C
LK

0 0 0 0 0

4 0

Reset

EFUSE_RD_FLASH_CRYPT_CONFIG This field returns the value of flash_crypt_config. (RO)

EFUSE_RD_SPI_PAD_CONFIG_CS0 This field returns the value of SPI_pad_config_cs0. (RO)

EFUSE_RD_SPI_PAD_CONFIG_D This field returns the value of SPI_pad_config_d. (RO)

EFUSE_RD_SPI_PAD_CONFIG_Q This field returns the value of SPI_pad_config_q. (RO)

EFUSE_RD_SPI_PAD_CONFIG_CLK This field returns the value of SPI_pad_config_clk. (RO)

Register 15.7: EFUSE_BLK0_RDATA6_REG (0x018)

(re
se

rve
d)

0 0

31 11

EFU
SE_R

D_K
EY_S

TA
TU

S

0

10

EFU
SE_R

D_D
IS

ABLE
_D

L_
CACHE

0

9

EFU
SE_R

D_D
IS

ABLE
_D

L_
DECRYPT

0

8

EFU
SE_R

D_D
IS

ABLE
_D

L_
ENCRYPT

0

7

EFU
SE_R

D_D
IS

ABLE
_J

TA
G

0

6

EFU
SE_R

D_A
BS_D

ONE_1

0

5

EFU
SE_R

D_A
BS_D

ONE_0

0

4

(re
se

rve
d)

0

3

EFU
SE_R

D_C
ONSOLE

_D
EBUG_D

IS
ABLE

0

2

EFU
SE_R

D_C
ODIN

G_S
CHEM

E

0 0

1 0

Reset

EFUSE_RD_KEY_STATUS This field returns the value of key_status. (RO)

EFUSE_RD_DISABLE_DL_CACHE This field returns the value of download_dis_cache. (RO)

EFUSE_RD_DISABLE_DL_DECRYPT This field returns the value of download_dis_decrypt. (RO)

EFUSE_RD_DISABLE_DL_ENCRYPT This field returns the value of download_dis_encrypt. (RO)

EFUSE_RD_DISABLE_JTAG This field returns the value of JTAG_disable. (RO)

EFUSE_RD_ABS_DONE_1 This field returns the value of abstract_done_1. (RO)

EFUSE_RD_ABS_DONE_0 This field returns the value of abstract_done_0. (RO)

EFUSE_RD_CONSOLE_DEBUG_DISABLE This field returns the value of console_debug_disable.

(RO)

EFUSE_RD_CODING_SCHEME This field returns the value of coding_scheme. (RO)

Espressif Systems 285 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

Register 15.8: EFUSE_BLK0_WDATA0_REG (0x01c)

(re
se

rve
d)

0 0 0 0

31 28

EFU
SE_F

LA
SH_C

RYPT_
CNT

0 0 0 0 0 0 0 0

27 20

EFU
SE_R

D_D
IS

0 0 0 0

19 16

EFU
SE_W

R_D
IS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

EFUSE_FLASH_CRYPT_CNT This field programs the value of flash_crypt_cnt. (R/W)

EFUSE_RD_DIS This field programs the value of efuse_rd_disable. (R/W)

EFUSE_WR_DIS This field programs the value of efuse_wr_disable. (R/W)

Register 15.9: EFUSE_BLK0_WDATA1_REG (0x020)

0 0

31 0

Reset

EFUSE_BLK0_WDATA1_REG This field programs the value of lower 32 bits of WIFI_MAC_Address.

(R/W)

Register 15.10: EFUSE_BLK0_WDATA2_REG (0x024)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

EFU
SE_W

IFI
_M

AC_C
RC_H

IG
H

0 0

23 0

Reset

EFUSE_WIFI_MAC_CRC_HIGH This field programs the value of higher 24 bits of

WIFI_MAC_Address. (R/W)

Espressif Systems 286 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

Register 15.11: EFUSE_BLK0_WDATA3_REG (0x028)

(re
se

rve
d)

0 0

31 9

EFU
SE_S

PI_P
AD_C

ONFIG
_H

D

0 0 0 0 0

8 4

(re
se

rve
d)

0 0 0 0

7 4

Reset

EFUSE_SPI_PAD_CONFIG_HD This field programs the value of SPI_pad_config_hd. (R/W)

Register 15.12: EFUSE_BLK0_WDATA4_REG (0x02c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

EFU
SE_S

DIO
_F

ORCE

0

16

EFU
SE_S

DIO
_T

IEH

0

15

EFU
SE_X

PD_S
DIO

0

14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14

Reset

EFUSE_SDIO_FORCE This field programs the value of SDIO_TIEH. (R/W)

EFUSE_SDIO_TIEH This field programs the value of SDIO_TIEH. (R/W)

EFUSE_XPD_SDIO This field programs the value of XPD_SDIO_REG. (R/W)

Register 15.13: EFUSE_BLK0_WDATA5_REG (0x030)

EFU
SE_F

LA
SH_C

RYPT_
CONFIG

0 0 0 0

31 28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

EFU
SE_S

PI_P
AD_C

ONFIG
_C

S0

0 0 0 0 0

19 15

EFU
SE_S

PI_P
AD_C

ONFIG
_D

0 0 0 0 0

14 10

EFU
SE_S

PI_P
AD_C

ONFIG
_Q

0 0 0 0 0

9 5

EFU
SE_S

PI_P
AD_C

ONFIG
_C

LK

0 0 0 0 0

4 0

Reset

EFUSE_FLASH_CRYPT_CONFIG This field programs the value of flash_crypt_config. (R/W)

EFUSE_SPI_PAD_CONFIG_CS0 This field programs the value of SPI_pad_config_cs0. (R/W)

EFUSE_SPI_PAD_CONFIG_D This field programs the value of SPI_pad_config_d. (R/W)

EFUSE_SPI_PAD_CONFIG_Q This field programs the value of SPI_pad_config_q. (R/W)

EFUSE_SPI_PAD_CONFIG_CLK This field programs the value of SPI_pad_config_clk. (R/W)

Espressif Systems 287 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

Register 15.14: EFUSE_BLK0_WDATA6_REG (0x034)

(re
se

rve
d)

0 0

31 11

EFU
SE_K

EY_S
TA

TU
S

0

10

EFU
SE_D

IS
ABLE

_D
L_

CACHE

0

9

EFU
SE_D

IS
ABLE

_D
L_

DECRYPT

0

8

EFU
SE_D

IS
ABLE

_D
L_

ENCRYPT

0

7

EFU
SE_D

IS
ABLE

_J
TA

G

0

6

EFU
SE_A

BS_D
ONE_1

0

5

EFU
SE_A

BS_D
ONE_0

0

4

(re
se

rve
d)

0

3

EFU
SE_C

ONSOLE
_D

EBUG_D
IS

ABLE

0

2

EFU
SE_C

ODIN
G_S

CHEM
E

0 0

1 0

Reset

EFUSE_KEY_STATUS This field programs the value of key_status. (R/W)

EFUSE_DISABLE_DL_CACHE This field programs the value of download_dis_cache. (R/W)

EFUSE_DISABLE_DL_DECRYPT This field programs the value of download_dis_decrypt. (R/W)

EFUSE_DISABLE_DL_ENCRYPT This field programs the value of download_dis_encrypt. (R/W)

EFUSE_DISABLE_JTAG This field programs the value of JTAG_disable. (R/W)

EFUSE_ABS_DONE_1 This field programs the value of abstract_done_1. (R/W)

EFUSE_ABS_DONE_0 This field programs the value of abstract_done_0. (R/W)

EFUSE_CONSOLE_DEBUG_DISABLE This field programs the value of console_debug_disable.

(R/W)

EFUSE_CODING_SCHEME This field programs the value of coding_scheme. (R/W)

Register 15.15: EFUSE_BLK1_RDATAn_REG (n: 0-7) (0x38+4*n)

0x000000000

31 0

Reset

EFUSE_BLK1_RDATAn_REG This field returns the value of word n in BLOCK1. (RO)

Register 15.16: EFUSE_BLK2_RDATAn_REG (n: 0-7) (0x58+4*n)

0x000000000

31 0

Reset

EFUSE_BLK2_RDATAn_REG This field returns the value of word n in BLOCK2. (RO)

Espressif Systems 288 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

Register 15.17: EFUSE_BLK3_RDATAn_REG (n: 0-7) (0x78+4*n)

0x000000000

31 0

Reset

EFUSE_BLK3_RDATAn_REG This field returns the value of word n in BLOCK3. (RO)

Register 15.18: EFUSE_BLK1_WDATAn_REG (n: 0-7) (0x98+4*n)

0x000000000

31 0

Reset

EFUSE_BLK1_WDATAn_REG This field programs the value of word n in of BLOCK1. (R/W)

Register 15.19: EFUSE_BLK2_WDATAn_REG (n: 0-7) (0xB8+4*n)

0x000000000

31 0

Reset

EFUSE_BLK2_WDATAn_REG This field programs the value of word n in of BLOCK2. (R/W)

Register 15.20: EFUSE_BLK3_WDATAn_REG (n: 0-7) (0xD8+4*n)

0x000000000

31 0

Reset

EFUSE_BLK3_WDATAn_REG This field programs the value of word n in of BLOCK3. (R/W)

Register 15.21: EFUSE_CLK_REG (0x0f8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

EFU
SE_C

LK
_S

EL1

0x040

15 8

EFU
SE_C

LK
_S

EL0

0x052

7 0

Reset

EFUSE_CLK_SEL1 eFuse clock configuration field. (R/W)

EFUSE_CLK_SEL0 eFuse clock configuration field. (R/W)

Espressif Systems 289 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

Register 15.22: EFUSE_CONF_REG (0x0fc)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

EFU
SE_O

P_C
ODE

0x00000

15 0

Reset

EFUSE_OP_CODE eFuse operation code register. (R/W)

Register 15.23: EFUSE_CMD_REG (0x104)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_C

M
D

0

1

EFU
SE_R

EAD_C
M

D

0

0

Reset

EFUSE_PGM_CMD Set this to 1 to start a program operation. Reverts to 0 when the program op-

eration is done. (R/W)

EFUSE_READ_CMD Set this to 1 to start a read operation. Reverts to 0 when the read operation is

done. (R/W)

Register 15.24: EFUSE_INT_RAW_REG (0x108)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_D

ONE_IN
T_

RAW

0

1

EFU
SE_R

EAD_D
ONE_IN

T_
RAW

0

0

Reset

EFUSE_PGM_DONE_INT_RAW The raw interrupt status bit for the EFUSE_PGM_DONE_INT inter-

rupt. (RO)

EFUSE_READ_DONE_INT_RAW The raw interrupt status bit for the EFUSE_READ_DONE_INT in-

terrupt. (RO)

Espressif Systems 290 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

Register 15.25: EFUSE_INT_ST_REG (0x10c)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_D

ONE_IN
T_

ST

0

1

EFU
SE_R

EAD_D
ONE_IN

T_
ST

0

0

Reset

EFUSE_PGM_DONE_INT_ST The masked interrupt status bit for the EFUSE_PGM_DONE_INT in-

terrupt. (RO)

EFUSE_READ_DONE_INT_ST The masked interrupt status bit for the EFUSE_READ_DONE_INT in-

terrupt. (RO)

Register 15.26: EFUSE_INT_ENA_REG (0x110)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_D

ONE_IN
T_

ENA

0

1

EFU
SE_R

EAD_D
ONE_IN

T_
ENA

0

0

Reset

EFUSE_PGM_DONE_INT_ENA The interrupt enable bit for the EFUSE_PGM_DONE_INT interrupt.

(R/W)

EFUSE_READ_DONE_INT_ENA The interrupt enable bit for the EFUSE_READ_DONE_INT interrupt.

(R/W)

Register 15.27: EFUSE_INT_CLR_REG (0x114)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_D

ONE_IN
T_

CLR

0

1

EFU
SE_R

EAD_D
ONE_IN

T_
CLR

0

0

Reset

EFUSE_PGM_DONE_INT_CLR Set this bit to clear the EFUSE_PGM_DONE_INT interrupt. (WO)

EFUSE_READ_DONE_INT_CLR Set this bit to clear the EFUSE_READ_DONE_INT interrupt. (WO)

Espressif Systems 291 ESP32 Technical Reference Manual V1.8

15. EFUSE CONTROLLER

Register 15.28: EFUSE_DAC_CONF_REG (0x118)

(re
se

rve
d)

0 0

31 8

EFU
SE_D

AC_C
LK

_D
IV

40

7 0

Reset

EFUSE_DAC_CLK_DIV Efuse timing configuration register. (R/W)

Register 15.29: EFUSE_DEC_STATUS_REG (0x11c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

EFU
SE_D

EC_W
ARNIN

GS

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

EFUSE_DEC_WARNINGS If a bit is set in this register, it means some errors were corrected while

decoding the 3/4 encoding scheme. (RO)

Espressif Systems 292 ESP32 Technical Reference Manual V1.8

16. AES ACCELERATOR

16. AES Accelerator

16.1 Introduction

The AES Accelerator speeds up AES operations significantly, compared to AES algorithms implemented solely in

software. The AES Accelerator supports six algorithms of FIPS PUB 197, specifically AES-128, AES-192 and

AES-256 encryption and decryption.

16.2 Features

• Supports AES-128 encryption and decryption

• Supports AES-192 encryption and decryption

• Supports AES-256 encryption and decryption

• Supports four variations of key endianness and four variations of text endianness

16.3 Functional Description

16.3.1 AES Algorithm Operations

The AES Accelerator supports six algorithms of FIPS PUB 197, specifically AES-128, AES-192 and AES-256

encryption and decryption. The AES_MODE_REG register can be configured to different values to enable

different algorithm operations, as shown in Table 54.

Table 54: Operation Mode

AES_MODE_REG[2:0] Operation

0 AES-128 Encryption

1 AES-192 Encryption

2 AES-256 Encryption

4 AES-128 Decryption

5 AES-192 Decryption

6 AES-256 Decryption

16.3.2 Key, Plaintext and Ciphertext

The encryption or decryption key is stored in AES_KEY_n_REG, which is a set of eight 32-bit registers. For

AES-128 encryption/decryption, the 128-bit key is stored in AES_KEY_0_REG ~ AES_KEY_3_REG. For

AES-192 encryption/decryption, the 192-bit key is stored in AES_KEY_0_REG ~ AES_KEY_5_REG. For

AES-256 encryption/decryption, the 256-bit key is stored in AES_KEY_0_REG ~ AES_KEY_7_REG.

Plaintext and ciphertext is stored in the AES_TEXT_m_REG registers. There are four 32-bit registers. To enable

AES-128/192/256 encryption, initialize the AES_TEXT_m_REG registers with plaintext before encryption. When

encryption is finished, the AES Accelerator will store back the resulting ciphertext in the AES_TEXT_m_REG

registers. To enable AES-128/192/256 decryption, initialize the AES_TEXT_m_REG registers with ciphertext

before decryption. When decryption is finished, the AES Accelerator will store back the resulting plaintext in the

AES_TEXT_m_REG registers.

Espressif Systems 293 ESP32 Technical Reference Manual V1.8

16. AES ACCELERATOR

16.3.3 Endianness

Key Endianness

Bit 0 and bit 1 in AES_ENDIAN_REG define the key endianness. For detailed information, please see Table 56,

Table 57 and Table 58. w[0] ~ w[3] in Table 56, w[0] ~ w[5] in Table 57 and w[0] ~ w[7] in Table 58 are “the first Nk

words of the expanded key” as specified in “5.2: Key Expansion” of FIPS PUB 197. “Column Bit” specifies the

bytes in the word from w[0] to w[7]. The bytes of AES_KEY_n_REG comprise “the first Nk words of the expanded

key”.

Text Endianness

Bit 2 and bit 3 in AES_ENDIAN_REG define the endianness of input text, while Bit 4 and Bit 5 define the

endianness of output text. The input text refers to the plaintext in AES-128/192/256 encryption and the

ciphertext in decryption. The output text refers to the ciphertext in AES-128/192/256 encryption and the plaintext

in decryption. For details, please see Table 55. “State” in Table 55 is defined as that in “3.4: The State” of FIPS

PUB 197: “The AES algorithm operations are performed on a two-dimensional array of bytes called the State”.

The ciphertext or plaintexts stored in each byte of AES_TEXT_m_REG comprise the State.

Table 55: AES Text Endianness

AES_ENDIAN_REG[3]/[5] AES_ENDIAN_REG[2]/[4] Plaintext/Ciphertext

0 0

State
c

0 1 2 3

r

0 AES_TEXT_3_REG[31:24] AES_TEXT_2_REG[31:24] AES_TEXT_1_REG[31:24] AES_TEXT_0_REG[31:24]

1 AES_TEXT_3_REG[23:16] AES_TEXT_2_REG[23:16] AES_TEXT_1_REG[23:16] AES_TEXT_0_REG[23:16]

2 AES_TEXT_3_REG[15:8] AES_TEXT_2_REG[15:8] AES_TEXT_1_REG[15:8] AES_TEXT_0_REG[15:8]

3 AES_TEXT_3_REG[7:0] AES_TEXT_2_REG[7:0] AES_TEXT_1_REG[7:0] AES_TEXT_0_REG[7:0]

0 1

State
c

0 1 2 3

r

0 AES_TEXT_3_REG[7:0] AES_TEXT_2_REG[7:0] AES_TEXT_1_REG[7:0] AES_TEXT_0_REG[7:0]

1 AES_TEXT_3_REG[15:8] AES_TEXT_2_REG[15:8] AES_TEXT_1_REG[15:8] AES_TEXT_0_REG[15:8]

2 AES_TEXT_3_REG[23:16] AES_TEXT_2_REG[23:16] AES_TEXT_1_REG[23:16] AES_TEXT_0_REG[23:16]

3 AES_TEXT_3_REG[31:24] AES_TEXT_2_REG[31:24] AES_TEXT_1_REG[31:24] AES_TEXT_0_REG[31:24]

1 0

State
c

0 1 2 3

r

0 AES_TEXT_0_REG[31:24] AES_TEXT_1_REG[31:24] AES_TEXT_2_REG[31:24] AES_TEXT_3_REG[31:24]

1 AES_TEXT_0_REG[23:16] AES_TEXT_1_REG[23:16] AES_TEXT_2_REG[23:16] AES_TEXT_3_REG[23:16]

2 AES_TEXT_0_REG[15:8] AES_TEXT_1_REG[15:8] AES_TEXT_2_REG[15:8] AES_TEXT_3_REG[15:8]

3 AES_TEXT_0_REG[7:0] AES_TEXT_1_REG[7:0] AES_TEXT_2_REG[7:0] AES_TEXT_3_REG[7:0]

1 1

State
c

0 1 2 3

r

0 AES_TEXT_0_REG[7:0] AES_TEXT_1_REG[7:0] AES_TEXT_2_REG[7:0] AES_TEXT_3_REG[7:0]

1 AES_TEXT_0_REG[15:8] AES_TEXT_1_REG[15:8] AES_TEXT_2_REG[15:8] AES_TEXT_3_REG[15:8]

2 AES_TEXT_0_REG[23:16] AES_TEXT_1_REG[23:16] AES_TEXT_2_REG[23:16] AES_TEXT_3_REG[23:16]

3 AES_TEXT_0_REG[31:24] AES_TEXT_1_REG[31:24] AES_TEXT_2_REG[31:24] AES_TEXT_3_REG[31:24]

Espressif Systems 294 ESP32 Technical Reference Manual V1.8

16.
A
ES

A
C
C
ELER

A
TO

R
Table 56: AES-128 Key Endianness

AES_ENDIAN_REG[1] AES_ENDIAN_REG[0] Bit w[0] w[1] w[2] w[3]

0 0

[31:24] AES_KEY_3_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_0_REG[31:24]

[23:16] AES_KEY_3_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_0_REG[23:16]

[15:8] AES_KEY_3_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_0_REG[15:8]

[7:0] AES_KEY_3_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_0_REG[7:0]

0 1

[31:24] AES_KEY_3_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_0_REG[7:0]

[23:16] AES_KEY_3_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_0_REG[15:8]

[15:8] AES_KEY_3_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_0_REG[23:16]

[7:0] AES_KEY_3_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_0_REG[31:24]

1 0

[31:24] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24]

[23:16] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16]

[15:8] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8]

[7:0] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0]

1 1

[31:24] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0]

[23:16] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8]

[15:8] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16]

[7:0] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24]

Table 57: AES-192 Key Endianness

AES_ENDIAN_REG[1] AES_ENDIAN_REG[0] Bit w[0] w[1] w[2] w[3] w[4] w[5]

0 0

[31:24] AES_KEY_5_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_0_REG[31:24]

[23:16] AES_KEY_5_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_0_REG[23:16]

[15:8] AES_KEY_5_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_0_REG[15:8]

[7:0] AES_KEY_5_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_0_REG[7:0]

0 1

[31:24] AES_KEY_5_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_0_REG[7:0]

[23:16] AES_KEY_5_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_0_REG[15:8]

[15:8] AES_KEY_5_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_0_REG[23:16]

[7:0] AES_KEY_5_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_0_REG[31:24]

1 0

[31:24] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_5_REG[31:24]

[23:16] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_5_REG[23:16]

[15:8] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_5_REG[15:8]

[7:0] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_5_REG[7:0]

1 1

[31:24] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_5_REG[7:0]

[23:16] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_5_REG[15:8]

[15:8] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_5_REG[23:16]

[7:0] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_5_REG[31:24]

Table 58: AES-256 Key Endianness

AES_ENDIAN_REG[1] AES_ENDIAN_REG[0] Bit w[0] w[1] w[2] w[3] w[4] w[5] w[6] w[7]

0 0

[31:24] AES_KEY_7_REG[31:24] AES_KEY_6_REG[31:24] AES_KEY_5_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_0_REG[31:24]

[23:16] AES_KEY_7_REG[23:16] AES_KEY_6_REG[23:16] AES_KEY_5_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_0_REG[23:16]

[15:8] AES_KEY_7_REG[15:8] AES_KEY_6_REG[15:8] AES_KEY_5_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_0_REG[15:8]

[7:0] AES_KEY_7_REG[7:0] AES_KEY_6_REG[7:0] AES_KEY_5_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_0_REG[7:0]

0 1

[31:24] AES_KEY_7_REG[7:0] AES_KEY_6_REG[7:0] AES_KEY_5_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_0_REG[7:0]

[23:16] AES_KEY_7_REG[15:8] AES_KEY_6_REG[15:8] AES_KEY_5_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_0_REG[15:8]

[15:8] AES_KEY_7_REG[23:16] AES_KEY_6_REG[23:16] AES_KEY_5_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_0_REG[23:16]

[7:0] AES_KEY_7_REG[31:24] AES_KEY_6_REG[31:24] AES_KEY_5_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_0_REG[31:24]

1 0

[31:24] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_5_REG[31:24] AES_KEY_6_REG[31:24] AES_KEY_7_REG[31:24]

[23:16] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_5_REG[23:16] AES_KEY_6_REG[23:16] AES_KEY_7_REG[23:16]

[15:8] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_5_REG[15:8] AES_KEY_6_REG[15:8] AES_KEY_7_REG[15:8]

[7:0] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_5_REG[7:0] AES_KEY_6_REG[7:0] AES_KEY_7_REG[7:0]

1 1

[31:24] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_5_REG[7:0] AES_KEY_6_REG[7:0] AES_KEY_7_REG[7:0]

[23:16] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_5_REG[15:8] AES_KEY_6_REG[15:8] AES_KEY_7_REG[15:8]

[15:8] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_5_REG[23:16] AES_KEY_6_REG[23:16] AES_KEY_7_REG[23:16]

[7:0] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_5_REG[31:24] AES_KEY_6_REG[31:24] AES_KEY_7_REG[31:24]

E
spressifS

ystem
s

295
E

S
P

32
TechnicalR

eference
M

anualV
1.8

16. AES ACCELERATOR

16.3.4 Encryption and Decryption Operations

Single Operation

1. Initialize AES_MODE_REG, AES_KEY_n_REG, AES_TEXT_m_REG and AES_ENDIAN_REG.

2. Write 1 to AES_START_REG.

3. Wait until AES_IDLE_REG reads 1.

4. Read results from AES_TEXT_m_REG.

Consecutive Operations

Every time an operation is completed, only AES_TEXT_m_REG is modified by the AES Accelerator. Initialization

can, therefore, be simplified in a series of consecutive operations.

1. Update contents of AES_MODE_REG, AES_KEY_n_REG and AES_ENDIAN_REG, if required.

2. Load AES_TEXT_m_REG.

3. Write 1 to AES_START_REG.

4. Wait until AES_IDLE_REG reads 1.

5. Read results from AES_TEXT_m_REG.

16.3.5 Speed

The AES Accelerator requires 11 to 15 clock cycles to encrypt a message block, and 21 or 22 clock cycles to

decrypt a message block.

16.4 Register Summary

Name Description Address Access

Configuration registers

AES_MODE_REG Mode of operation of the AES Accelerator 0x3FF01008 R/W

AES_ENDIAN_REG Endianness configuration register 0x3FF01040 R/W

Key registers

AES_KEY_0_REG AES key material register 0 0x3FF01010 R/W

AES_KEY_1_REG AES key material register 1 0x3FF01014 R/W

AES_KEY_2_REG AES key material register 2 0x3FF01018 R/W

AES_KEY_3_REG AES key material register 3 0x3FF0101C R/W

AES_KEY_4_REG AES key material register 4 0x3FF01020 R/W

AES_KEY_5_REG AES key material register 5 0x3FF01024 R/W

AES_KEY_6_REG AES key material register 6 0x3FF01028 R/W

AES_KEY_7_REG AES key material register 7 0x3FF0102C R/W

Encrypted/decrypted data registers

AES_TEXT_0_REG AES encrypted/decrypted data register 0 0x3FF01030 R/W

AES_TEXT_1_REG AES encrypted/decrypted data register 1 0x3FF01034 R/W

AES_TEXT_2_REG AES encrypted/decrypted data register 2 0x3FF01038 R/W

AES_TEXT_3_REG AES encrypted/decrypted data register 3 0x3FF0103C R/W

Control/status registers

Espressif Systems 296 ESP32 Technical Reference Manual V1.8

16. AES ACCELERATOR

Name Description Address Access

AES_START_REG AES operation start control register 0x3FF01000 WO

AES_IDLE_REG AES idle status register 0x3FF01004 RO

Espressif Systems 297 ESP32 Technical Reference Manual V1.8

16. AES ACCELERATOR

16.5 Registers

Register 16.1: AES_START_REG (0x000)

(re
se

rve
d)

0x00000000

31 1

AES_S
TA

RT

x

0

Reset

AES_START Write 1 to start the AES operation. (WO)

Register 16.2: AES_IDLE_REG (0x004)

(re
se

rve
d)

0x00000000

31 1

AES_ID
LE

1

0

Reset

AES_IDLE AES Idle register. Reads ’zero’ while the AES Accelerator is busy processing; reads ’one’

otherwise. (RO)

Register 16.3: AES_MODE_REG (0x008)

(re
se

rve
d)

0x00000000

31 3

AES_M
ODE

0

2 0

Reset

AES_MODE Selects the AES accelerator mode of operation. See Table 54 for details. (R/W)

Register 16.4: AES_KEY_n_REG (n: 0-7) (0x10+4*n)

0x000000000

31 0

Reset

AES_KEY_n_REG (n: 0-7) AES key material register. (R/W)

Register 16.5: AES_TEXT_m_REG (m: 0-3) (0x30+4*m)

0x000000000

31 0

Reset

AES_TEXT_m_REG (m: 0-3) Plaintext and ciphertext register. (R/W)

Espressif Systems 298 ESP32 Technical Reference Manual V1.8

16. AES ACCELERATOR

Register 16.6: AES_ENDIAN_REG (0x040)

(re
se

rve
d)

0x0000000

31 6

AES_E
NDIA

N

1 1 1 1 1 1

5 0

Reset

AES_ENDIAN Endianness selection register. See Table 55 for details. (R/W)

Espressif Systems 299 ESP32 Technical Reference Manual V1.8

17. SHA ACCELERATOR

17. SHA Accelerator

17.1 Introduction

The SHA Accelerator is included to speed up SHA hashing operations significantly, compared to SHA hashing

algorithms implemented solely in software. The SHA Accelerator supports four algorithms of FIPS PUB 180-4,

specifically SHA-1, SHA-256, SHA-384 and SHA-512.

17.2 Features

Hardware support for popular secure hashing algorithms:

• SHA-1

• SHA-256

• SHA-384

• SHA-512

17.3 Functional Description

17.3.1 Padding and Parsing the Message

The SHA Accelerator can only accept one message block at a time. Software divides the message into blocks

according to “5.2 Parsing the Message” in FIPS PUB 180-4 and writes one block to the SHA_TEXT_n_REG

registers each time. For SHA-1 and SHA-256, software writes a 512-bit message block to SHA_TEXT_0_REG

~ SHA_TEXT_15_REG each time. For SHA-384 and SHA-512, software writes a 1024-bit message block to

SHA_TEXT_0_REG ~ SHA_TEXT_31_REG each time.

The SHA Accelerator is unable to perform the padding operation of “5.1 Padding the Message” in FIPS PUB

180-4; Note that the user software is expected to pad the message before feeding it into the accelerator.

As described in “2.2.1: Parameters” in FIPS PUB 180-4, “M (i)
0 is the leftmost word of message block i”. M (i)

0 is

stored in SHA_TEXT_0_REG. In the same fashion, the SHA_TEXT_1_REG register stores the second left-most

word of a message blockH(N)
1 , etc.

17.3.2 Message Digest

When the hashing operation is finished, the message digest will be refreshed by SHA Accelerator and will be

stored in SHA_TEXT_n_REG. SHA-1 produces a 160-bit message digest and stores it in SHA_TEXT_0_REG ~
SHA_TEXT_4_REG. SHA-256 produces a 256-bit message digest and stores it in SHA_TEXT_0_REG ~
SHA_TEXT_7_REG. SHA-384 produces a 384-bit message digest and stores it in SHA_TEXT_0_REG ~
SHA_TEXT_11_REG. SHA-512 produces a 512-bit message digest and stores it in SHA_TEXT_0_REG ~
SHA_TEXT_15_REG.

As described in “2.2.1 Parameters” in FIPS PUB 180-4, “H(N) is the final hash value, and is used to determine

the message digest”, while “H(i)
0 is the leftmost word of hash value i”, so the leftmost word H

(N)
0 in the message

digest is stored in SHA_TEXT_0_REG. In the same fashion, the second leftmost word H
(N)
1 in the message

digest is stored in SHA_TEXT_1_REG, etc.

Espressif Systems 300 ESP32 Technical Reference Manual V1.8

17. SHA ACCELERATOR

17.3.3 Hash Operation

There is a set of control registers for SHA-1, SHA-256, SHA-384 and SHA-512, respectively; different hashing

algorithms use different control registers.

SHA-1 uses SHA_SHA1_START_REG, SHA_SHA1_CONTINUE_REG, SHA_SHA1_LOAD_REG and

SHA_SHA1_BUSY_REG.

SHA-256 uses SHA_SHA256_START_REG, SHA_SHA256_CONTINUE_REG,

SHA_SHA256_LOAD_REG and SHA_SHA256_BUSY_REG. SHA-384 uses SHA_SHA384_START_REG,

SHA_SHA384_CONTINUE_REG, SHA_SHA384_LOAD_REG and SHA_SHA384_BUSY_REG.

SHA-512 uses SHA_SHA512_START_REG, SHA_SHA512_CONTINUE_REG, SHA_SHA512_LOAD_REG

and SHA_SHA512_BUSY_REG. The following steps describe the operation in a detailed manner.

1. Feed the accelerator with the first message block:

(a) Use the first message block to initialize SHA_TEXT_n_REG.

(b) Write 1 to SHA_X_START_REG.

(c) Wait for SHA_X_BUSY_REG to read 0, indicating that the operation is completed.

2. Similarly, feed the accelerator with subsequent message blocks:

(a) Initialize SHA_TEXT_n_REG using the subsequent message block.

(b) Write 1 to SHA_X_CONTINUE_REG.

(c) Wait for SHA_X_BUSY_REG to read 0, indicating that the operation is completed.

3. Get message digest:

(a) Write 1 to SHA_X_LOAD_REG.

(b) Wait for SHA_X_BUSY_REG to read 0, indicating that operation is completed.

(c) Read message digest from SHA_TEXT_n_REG.

17.3.4 Speed

The SHA Accelerator requires 60 to 100 clock cycles to process a message block and 8 to 20 clock cycles to

calculate the final digest.

17.4 Register Summary

Name Description Address Access

Encrypted/decrypted data registers

SHA_TEXT_0_REG SHA encrypted/decrypted data register 0 0x3FF03000 R/W

SHA_TEXT_1_REG SHA encrypted/decrypted data register 1 0x3FF03004 R/W

SHA_TEXT_2_REG SHA encrypted/decrypted data register 2 0x3FF03008 R/W

SHA_TEXT_3_REG SHA encrypted/decrypted data register 3 0x3FF0300C R/W

SHA_TEXT_4_REG SHA encrypted/decrypted data register 4 0x3FF03010 R/W

SHA_TEXT_5_REG SHA encrypted/decrypted data register 5 0x3FF03014 R/W

SHA_TEXT_6_REG SHA encrypted/decrypted data register 6 0x3FF03018 R/W

SHA_TEXT_7_REG SHA encrypted/decrypted data register 7 0x3FF0301C R/W

Espressif Systems 301 ESP32 Technical Reference Manual V1.8

17. SHA ACCELERATOR

Name Description Address Access

SHA_TEXT_8_REG SHA encrypted/decrypted data register 8 0x3FF03020 R/W

SHA_TEXT_9_REG SHA encrypted/decrypted data register 9 0x3FF03024 R/W

SHA_TEXT_10_REG SHA encrypted/decrypted data register 10 0x3FF03028 R/W

SHA_TEXT_11_REG SHA encrypted/decrypted data register 11 0x3FF0302C R/W

SHA_TEXT_12_REG SHA encrypted/decrypted data register 12 0x3FF03030 R/W

SHA_TEXT_13_REG SHA encrypted/decrypted data register 13 0x3FF03034 R/W

SHA_TEXT_14_REG SHA encrypted/decrypted data register 14 0x3FF03038 R/W

SHA_TEXT_15_REG SHA encrypted/decrypted data register 15 0x3FF0303C R/W

SHA_TEXT_16_REG SHA encrypted/decrypted data register 16 0x3FF03040 R/W

SHA_TEXT_17_REG SHA encrypted/decrypted data register 17 0x3FF03044 R/W

SHA_TEXT_18_REG SHA encrypted/decrypted data register 18 0x3FF03048 R/W

SHA_TEXT_19_REG SHA encrypted/decrypted data register 19 0x3FF0304C R/W

SHA_TEXT_20_REG SHA encrypted/decrypted data register 20 0x3FF03050 R/W

SHA_TEXT_21_REG SHA encrypted/decrypted data register 21 0x3FF03054 R/W

SHA_TEXT_22_REG SHA encrypted/decrypted data register 22 0x3FF03058 R/W

SHA_TEXT_23_REG SHA encrypted/decrypted data register 23 0x3FF0305C R/W

SHA_TEXT_24_REG SHA encrypted/decrypted data register 24 0x3FF03060 R/W

SHA_TEXT_25_REG SHA encrypted/decrypted data register 25 0x3FF03064 R/W

SHA_TEXT_26_REG SHA encrypted/decrypted data register 26 0x3FF03068 R/W

SHA_TEXT_27_REG SHA encrypted/decrypted data register 27 0x3FF0306C R/W

SHA_TEXT_28_REG SHA encrypted/decrypted data register 28 0x3FF03070 R/W

SHA_TEXT_29_REG SHA encrypted/decrypted data register 29 0x3FF03074 R/W

SHA_TEXT_30_REG SHA encrypted/decrypted data register 30 0x3FF03078 R/W

SHA_TEXT_31_REG SHA encrypted/decrypted data register 31 0x3FF0307C R/W

Control/status registers

SHA_SHA1_START_REG Control register to initiate SHA1 operation 0x3FF03080 WO

SHA_SHA1_CONTINUE_REG Control register to continue SHA1 operation 0x3FF03084 WO

SHA_SHA1_LOAD_REG Control register to calculate the final SHA1 hash 0x3FF03088 WO

SHA_SHA1_BUSY_REG Status register for SHA1 operation 0x3FF0308C RO

SHA_SHA256_START_REG Control register to initiate SHA256 operation 0x3FF03090 WO

SHA_SHA256_CONTINUE_REG Control register to continue SHA256 operation 0x3FF03094 WO

SHA_SHA256_LOAD_REG
Control register to calculate the final SHA256

hash
0x3FF03098 WO

SHA_SHA256_BUSY_REG Status register for SHA256 operation 0x3FF0309C RO

SHA_SHA384_START_REG Control register to initiate SHA384 operation 0x3FF030A0 WO

SHA_SHA384_CONTINUE_REG Control register to continue SHA384 operation 0x3FF030A4 WO

SHA_SHA384_LOAD_REG
Control register to calculate the final SHA384

hash
0x3FF030A8 WO

SHA_SHA384_BUSY_REG Status register for SHA384 operation 0x3FF030AC RO

SHA_SHA512_START_REG Control register to initiate SHA512 operation 0x3FF030B0 WO

SHA_SHA512_CONTINUE_REG Control register to continue SHA512 operation 0x3FF030B4 WO

SHA_SHA512_LOAD_REG
Control register to calculate the final SHA512

hash
0x3FF030B8 WO

SHA_SHA512_BUSY_REG Status register for SHA512 operation 0x3FF030BC RO

Espressif Systems 302 ESP32 Technical Reference Manual V1.8

17. SHA ACCELERATOR

17.5 Registers

Register 17.1: SHA_TEXT_n_REG (n: 0-31) (0x0+4*n)

0x000000000

31 0

Reset

SHA_TEXT_n_REG (n: 0-31) SHA Message block and hash result register. (R/W)

Register 17.2: SHA_SHA1_START_REG (0x080)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA1_

STA
RT

0

0

Reset

SHA_SHA1_START Write 1 to start an SHA-1 operation on the first message block. (WO)

Register 17.3: SHA_SHA1_CONTINUE_REG (0x084)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA1_

CONTIN
UE

0

0

Reset

SHA_SHA1_CONTINUE Write 1 to continue the SHA-1 operation with subsequent blocks. (WO)

Register 17.4: SHA_SHA1_LOAD_REG (0x088)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA1_

LO
AD

0

0

Reset

SHA_SHA1_LOAD Write 1 to finish the SHA-1 operation to calculate the final message hash. (WO)

Espressif Systems 303 ESP32 Technical Reference Manual V1.8

17. SHA ACCELERATOR

Register 17.5: SHA_SHA1_BUSY_REG (0x08C)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA1_

BUSY

0

0

Reset

SHA_SHA1_BUSY SHA-1 operation status: 1 if the SHA accelerator is processing data, 0 if it is idle.

(RO)

Register 17.6: SHA_SHA256_START_REG (0x090)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA25

6_
STA

RT

0

0

Reset

SHA_SHA256_START Write 1 to start an SHA-256 operation on the first message block. (WO)

Register 17.7: SHA_SHA256_CONTINUE_REG (0x094)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA25

6_
CONTIN

UE

0

0

Reset

SHA_SHA256_CONTINUE Write 1 to continue the SHA-256 operation with subsequent blocks. (WO)

Register 17.8: SHA_SHA256_LOAD_REG (0x098)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA25

6_
LO

AD

0

0

Reset

SHA_SHA256_LOAD Write 1 to finish the SHA-256 operation to calculate the final message hash.

(WO)

Espressif Systems 304 ESP32 Technical Reference Manual V1.8

17. SHA ACCELERATOR

Register 17.9: SHA_SHA256_BUSY_REG (0x09C)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA25

6_
BUSY

0

0

Reset

SHA_SHA256_BUSY SHA-256 operation status: 1 if the SHA accelerator is processing data, 0 if it

is idle. (RO)

Register 17.10: SHA_SHA384_START_REG (0x0A0)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA38

4_
STA

RT

0

0

Reset

SHA_SHA384_START Write 1 to start an SHA-384 operation on the first message block. (WO)

Register 17.11: SHA_SHA384_CONTINUE_REG (0x0A4)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA38

4_
CONTIN

UE

0

0

Reset

SHA_SHA384_CONTINUE Write 1 to continue the SHA-384 operation with subsequent blocks. (WO)

Register 17.12: SHA_SHA384_LOAD_REG (0x0A8)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA38

4_
LO

AD

0

0

Reset

SHA_SHA384_LOAD Write 1 to finish the SHA-384 operation to calculate the final message hash.

(WO)

Espressif Systems 305 ESP32 Technical Reference Manual V1.8

17. SHA ACCELERATOR

Register 17.13: SHA_SHA384_BUSY_REG (0x0AC)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA38

4_
BUSY

0

0

Reset

SHA_SHA384_BUSY SHA-384 operation status: 1 if the SHA accelerator is processing data, 0 if it

is idle. (RO)

Register 17.14: SHA_SHA512_START_REG (0x0B0)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA51

2_
STA

RT

0

0

Reset

SHA_SHA512_START Write 1 to start an SHA-512 operation on the first message block. (WO)

Register 17.15: SHA_SHA512_CONTINUE_REG (0x0B4)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA51

2_
CONTIN

UE

0

0

Reset

SHA_SHA512_CONTINUE Write 1 to continue the SHA-512 operation with subsequent blocks. (WO)

Register 17.16: SHA_SHA512_LOAD_REG (0x0B8)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA51

2_
LO

AD

0

0

Reset

SHA_SHA512_LOAD Write 1 to finish the SHA-512 operation to calculate the final message hash.

(WO)

Espressif Systems 306 ESP32 Technical Reference Manual V1.8

17. SHA ACCELERATOR

Register 17.17: SHA_SHA512_BUSY_REG (0x0BC)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA51

2_
BUSY

0

0

Reset

SHA_SHA512_BUSY SHA-512 operation status: 1 if the SHA accelerator is processing data, 0 if it

is idle. (RO)

Espressif Systems 307 ESP32 Technical Reference Manual V1.8

18. RSA ACCELERATOR

18. RSA Accelerator

18.1 Introduction

The RSA Accelerator provides hardware support for multiple precision arithmetic operations used in RSA

asymmetric cipher algorithms.

Sometimes, multiple precision arithmetic is also called ”bignum arithmetic”, ”bigint arithmetic” or ”arbitrary

precision arithmetic”.

18.2 Features

• Support for large-number modular exponentiation

• Support for large-number modular multiplication

• Support for large-number multiplication

• Support for various lengths of operands

18.3 Functional Description

18.3.1 Initialization

The RSA Accelerator is activated by enabling the corresponding peripheral clock, and by clearing the

DPORT_RSA_PD bit in the DPORT_RSA_PD_CTRL_REG register. This releases the RSA Accelerator from

reset.

When the RSA Accelerator is released from reset, the register RSA_CLEAN_REG reads 0 and an initialization

process begins. Hardware initializes the four memory blocks by setting them to 0. After initialization is complete,

RSA_CLEAN_REG reads 1. For this reason, software should query RSA_CLEAN_REG after being released from

reset, and before writing to any RSA Accelerator memory blocks or registers for the first time.

18.3.2 Large Number Modular Exponentiation

Large-number modular exponentiation performs Z = XY mod M . The operation is based on Montgomery

multiplication. Aside from the arguments X, Y , and M , two additional ones are needed — r and M ′. These

arguments are calculated in advance by software.

The RSA Accelerator supports operand lengths of N ∈ {512, 1024, 1536, 2048, 2560, 3072, 3584, 4096} bits. The

bit length of arguments Z, X, Y , M , and r can be any one from the N set, but all numbers in a calculation must

be of the same length. The bit length of M ′ is always 32.

To represent the numbers used as operands, define a base-b positional notation, as follows:

b = 232

Espressif Systems 308 ESP32 Technical Reference Manual V1.8

18. RSA ACCELERATOR

In this notation, each number is represented by a sequence of base-b digits, where each base-b digit is a 32-bit

word. Representing an N-bit number requires n base-b digits (all of the possible N lengths are multiples of

32).

n =
N

32

Z = (Zn−1Zn−2 · · ·Z0)b

X = (Xn−1Xn−2 · · ·X0)b

Y = (Yn−1Yn−2 · · ·Y0)b

M = (Mn−1Mn−2 · · ·M0)b

r = (rn−1rn−2 · · · r0)b

Each of the n values in Zn−1 ~ Z0, Xn−1 ~ X0, Yn−1 ~ Y0, Mn−1 ~ M0, rn−1 ~ r0 represents one base-b digit (a

32-bit word).

Zn−1, Xn−1, Yn−1, Mn−1 and rn−1 are the most significant bits of Z, X, Y , M , while Z0, X0, Y0, M0 and r0 are

the least significant bits.

If we define

R = bn

then, we can calculate the additional arguments, as follows:

r = R2 mod M (1)M ′′ ×M + 1 = R×R−1

M ′ = M ′′ mod b
(2)

(Equation 2 is written in a form suitable for calculations using the extended binary GCD algorithm.)

Software can implement large-number modular exponentiations in the following order:

1. Write (N
512 − 1) to RSA_MODEXP_MODE_REG.

2. Write Xi, Yi, Mi and ri (i ∈ [0, n) ∩ N) to memory blocks RSA_X_MEM, RSA_Y_MEM, RSA_M_MEM and

RSA_Z_MEM. The capacity of each memory block is 128 words. Each word of each memory block can

store one base-b digit. The memory blocks use the little endian format for storage, i.e. the least significant

digit of each number is in the lowest address.

Users need to write data to each memory block only according to the length of the number; data beyond

this length are ignored.

3. Write M ′ to RSA_M_PRIME_REG.

4. Write 1 to RSA_MODEXP_START_REG.

5. Wait for the operation to be completed. Poll RSA_INTERRUPT_REG until it reads 1, or until the RSA_INTR

interrupt is generated.

6. Read the result Zi (i ∈ [0, n) ∩ N) from RSA_Z_MEM.

7. Write 1 to RSA_INTERRUPT_REG to clear the interrupt.

After the operation, the RSA_MODEXP_MODE_REG register, memory blocks RSA_Y_MEM and RSA_M_MEM,

as well as the RSA_M_PRIME_REG will not have changed. However, Xi in RSA_X_MEM and ri in RSA_Z_MEM

Espressif Systems 309 ESP32 Technical Reference Manual V1.8

18. RSA ACCELERATOR

will have been overwritten. In order to perform another operation, refresh the registers and memory blocks, as

required.

18.3.3 Large Number Modular Multiplication

Large-number modular multiplication performs Z = X × Y mod M . This operation is based on Montgomery

multiplication. The same values r and M ′ are derived by software using the formulas 1 and 2 shown

above.

The RSA Accelerator supports large-number modular multiplication with eight different operand lengths, which

are the same as in the large-number modular exponentiation. The operation is performed by a combination of

software and hardware. The software performs two hardware operations in sequence.

The software process is as follows:

1. Write (N
512 − 1) to RSA_MULT_MODE_REG.

2. Write Xi, Mi and ri (i ∈ [0, n) ∩ N) to registers RSA_X_MEM, RSA_M_MEM and RSA_Z_MEM. Write data

to each memory block only according to the length of the number. Data beyond this length are ignored.

3. Write M ′ to RSA_M_PRIME_REG.

4. Write 1 to RSA_MULT_START_REG.

5. Wait for the first round of the operation to be completed. Poll RSA_INTERRUPT_REG until it reads 1, or

until the RSA_INTR interrupt is generated.

6. Write 1 to RSA_INTERRUPT_REG to clear the interrupt.

7. Write Yi (i ∈ [0, n) ∩ N) to RSA_X_MEM.

Users need to write to the memory block only according to the length of the number. Data beyond this

length are ignored.

8. Write 1 to RSA_MULT_START_REG.

9. Wait for the second round of the operation to be completed. Poll RSA_INTERRUPT_REG until it reads 1, or

until the RSA_INTR interrupt is generated.

10. Read the result Zi (i ∈ [0, n) ∩ N) from RSA_Z_MEM.

11. Write 1 to RSA_INTERRUPT_REG to clear the interrupt.

After the operation, the RSA_MULT_MODE_REG register, and memory blocks RSA_M_MEM and

RSA_M_PRIME_REG remain unchanged. Users do not need to refresh these registers or memory blocks if the

values remain the same.

18.3.4 Large Number Multiplication

Large-number multiplication performs Z = X × Y . The length of Z is twice that of X and Y . Therefore, the RSA

Accelerator supports large-number multiplication with only four operand lengths of N ∈ {512, 1024, 1536, 2048}
bits. The length N̂ of the result Z is 2×N bits.

Operands X and Y need to be extended to form arguments X̂ and Ŷ which have the same length (N̂ bits) as

Espressif Systems 310 ESP32 Technical Reference Manual V1.8

18. RSA ACCELERATOR

the result Z. X is left-extended and Y is right-extended, and defined as follows:

n =
N

32

N̂ = 2×N

n̂ =
N̂

32
= 2n

X̂ = (X̂n̂−1X̂n̂−2 · · · X̂0)b = (00 · · · 0︸ ︷︷ ︸
n

X)b = (00 · · · 0︸ ︷︷ ︸
n

Xn−1Xn−2 · · ·X0)b

Ŷ = (Ŷn̂−1Ŷn̂−2 · · · Ŷ0)b = (Y 00 · · · 0︸ ︷︷ ︸
n

)b = (Yn−1Yn−2 · · ·Y0 00 · · · 0︸ ︷︷ ︸
n

)b

Software performs the operation in the following order:

1. Write (N̂
512 − 1 + 8) to RSA_MULT_MODE_REG.

2. Write X̂i and Ŷi (i ∈ [0, n̂) ∩ N) to RSA_X_MEM and RSA_Z_MEM, respectively.

Write the valid data into each number’s memory block, according to their lengths. Values beyond this

length are ignored. Half of the base-b positional notations written to the memory are zero (using the

derivations shown above). These zero values are indispensable.

3. Write 1 to RSA_MULT_START_REG.

4. Wait for the operation to be completed. Poll RSA_INTERRUPT_REG until it reads 1, or until the RSA_INTR

interrupt is generated.

5. Read the result Zi (i ∈ [0, n̂) ∩ N) from RSA_Z_MEM.

6. Write 1 to RSA_INTERRUPT_REG to clear the interrupt.

After the operation, only the RSA_MULT_MODE_REG register remains unmodified.

18.4 Register Summary

Name Description Address Access

Configuration registers

RSA_M_PRIME_REG Register to store M’ 0x3FF02800 R/W

Modular exponentiation registers

RSA_MODEXP_MODE_REG Modular exponentiation mode 0x3FF02804 R/W

RSA_MODEXP_START_REG Start bit 0x3FF02808 WO

Modular multiplication registers

RSA_MULT_MODE_REG Modular multiplication mode 0x3FF0280C R/W

RSA_MULT_START_REG Start bit 0x3FF02810 WO

Misc registers

RSA_INTERRUPT_REG RSA interrupt register 0x3FF02814 R/W

RSA_CLEAN_REG RSA clean register 0x3FF02818 RO

Espressif Systems 311 ESP32 Technical Reference Manual V1.8

18. RSA ACCELERATOR

18.5 Registers

Register 18.1: RSA_M_PRIME_REG (0x800)

0x000000000

31 0

Reset

RSA_M_PRIME_REG This register contains M’. (R/W)

Register 18.2: RSA_MODEXP_MODE_REG (0x804)

(re
se

rve
d)

0 0

31 3

RSA_M
ODEXP

_M
ODE

0 0 0

2 0

Reset

RSA_MODEXP_MODE This register contains the mode of modular exponentiation. (R/W)

Register 18.3: RSA_MODEXP_START_REG (0x808)

(re
se

rve
d)

0 0

31 1

RSA_M
ODEXP

_S
TA

RT

0

0

Reset

RSA_MODEXP_START Write 1 to start modular exponentiation. (WO)

Register 18.4: RSA_MULT_MODE_REG (0x80C)

(re
se

rve
d)

0 0

31 4

RSA_M
ULT

_M
ODE

0 0 0 0

3 0

Reset

RSA_MULT_MODE This register contains the mode of modular multiplication and multiplication.

(R/W)

Espressif Systems 312 ESP32 Technical Reference Manual V1.8

18. RSA ACCELERATOR

Register 18.5: RSA_MULT_START_REG (0x810)

(re
se

rve
d)

0 0

31 1

RSA_M
ULT

_S
TA

RT

0

0

Reset

RSA_MULT_START Write 1 to start modular multiplication or multiplication. (WO)

Register 18.6: RSA_INTERRUPT_REG (0x814)

(re
se

rve
d)

0 0

31 1

RSA_IN
TE

RRUPT

0

0

Reset

RSA_INTERRUPT RSA interrupt status register. Will read 1 once an operation has completed. (R/W)

Register 18.7: RSA_CLEAN_REG (0x818)

(re
se

rve
d)

0 0

31 1

RSA_C
LE

AN

0

0

Reset

RSA_CLEAN This bit will read 1 once the memory initialization is completed. (RO)

Espressif Systems 313 ESP32 Technical Reference Manual V1.8

19. RANDOM NUMBER GENERATOR

19. Random Number Generator

19.1 Introduction

The ESP32 contains a true random number generator, whose values can be used as a basis for cryptographical

operations, among other things.

19.2 Feature

It can generate true random numbers.

19.3 Functional Description

When used correctly, every 32-bit value the system reads from the RNG_DATA_REG register of the random

number generator is a true random number. These true random numbers are generated based on the noise in

the Wi-Fi/BT RF system. When Wi-Fi and BT are disabled, the random number generator will give out

pseudo-random numbers.

When Wi-Fi or BT is enabled, the random number generator is fed two bits of entropy every APB clock cycle

(normally 80 MHz). Thus, for the maximum amount of entropy, it is advisable to read the random register at a

maximum rate of 5 MHz.

A data sample of 2 GB, read from the random number generator with Wi-Fi enabled and the random register

read at 5 MHz, has been tested using the Dieharder Random Number Testsuite (version 3.31.1). The sample

passed all tests.

19.4 Register Summary

Name Description Address Access

RNG_DATA_REG Random number data 0x3FF75144 RO

19.5 Register

Register 19.1: RNG_DATA_REG (0x144)

0x000000000

31 0

Reset

RNG_DATA_REG Random number source. (RO)

Espressif Systems 314 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

20. PID/MPU/MMU

20.1 Introduction

Every peripheral and memory section in the ESP32 is accessed through either an MMU (Memory Management

Unit) or an MPU (Memory Protection Unit). An MPU can allow or disallow the access of an application to a

memory range or peripheral, depending on what kind of permission the OS has given to that particular

application. An MMU can perform the same operation, as well as a virtual-to-physical memory address

translation. This can be used to map an internal or external memory range to a certain virtual memory area.

These mappings can be application-specific. Therefore, each application can be adjusted and have the memory

configuration that is necessary for it to run properly. To differentiate between the OS and applications, there are

eight Process Identifiers (or PIDs) that each application, or OS, can run. Furthermore, each application, or OS, is

equipped with their own sets of mappings and rights.

20.2 Features

• Eight processes in each of the PRO_CPU and APP_CPU

• MPU/MMU management of on-chip memories, off-chip memories, and peripherals, based on process ID

• On-chip memory management by MPU/MMU

• Off-chip memory management by MMU

• Peripheral management by MPU

20.3 Functional Description

20.3.1 PID Controller

In the ESP32, a PID controller acts as an indicator that signals the MMU/MPU the owner PID of the code that is

currently running. The intention is that the OS updates the PID in the PID controller every time it switches context

to another application. The PID controller can detect interrupts and automatically switch PIDs to that of the OS, if

so configured.

There are two peripheral PID controllers in the system, one for each of the two CPUs in the ESP32. Having a PID

controller per CPU allows running different processes on different CPUs, if so desired.

Espressif Systems 315 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

20.3.2 MPU/MMU

The MPU and MMU manage on-chip memories, off-chip memories, and peripherals. To do this they are based

on the process of accessing the peripheral or memory region. More specifically, when a code tries to access a

MMU/MPU-protected memory region or peripheral, the MMU or MPU will receive the PID from the PID generator

that is associated with the CPU on which the process is running.

For on-chip memory and peripherals, the decisions the MMU and MPU make are only based on this PID,

whereas the specific CPU the code is running on is not taken into account. Subsequently, the MMU/MPU

configuration for the internal memory and peripherals allows entries only for the eight different PIDs. In contrast,

the MMU moderating access to the external memory takes not only the PID into account, but also the CPU the

request is coming from. This means that MMUs have configuration options for every PID when running on the

APP_CPU, as well as every PID when running on the PRO_CPU. While, in practice, accesses from both CPUs

will be configured to have the same result for a specific process, doing so is not a hardware requirement.

The decision an MPU can make, based on this information, is to allow or deny a process to access the memory

region or peripheral. An MMU has the same function, but additionally it redirects the virtual memory access, which

the process acquired, into a physical memory access that can possibly reach out an entirely different physical

memory region. This way, MMU-governed memory can be remapped on a process-by-process basis.

20.3.2.1 Embedded Memory

The on-chip memory is governed by fixed-function MPUs, configurable MPUs, and MMUs:

Table 63: MPU and MMU Structure for Internal Memory

Address range
Name Size

From To
Governed by

ROM0 384 KB 0x4000_0000 0x4005_FFFF Static MPU

ROM1 64 KB 0x3FF9_0000 0x3FF9_FFFF Static MPU

SRAM0
64 KB 0x4007_0000 0x4007_FFFF Static MPU

128 KB 0x4008_0000 0x4009_FFFF SRAM0 MMU

SRAM1 (aliases)

128 KB 0x3FFE_0000 0x3FFF_FFFF Static MPU

128 KB 0x400A_0000 0x400B_FFFF Static MPU

32 KB 0x4000_0000 0x4000_7FFF Static MPU

SRAM2
72 KB 0x3FFA_E000 0x3FFB_FFFF Static MPU

128 KB 0x3FFC_0000 0x3FFD_FFFF SRAM2 MMU

RTC FAST (aliases)
8 KB 0x3FF8_0000 0x3FF8_1FFF RTC FAST MPU

8 KB 0x400C_0000 0x400C_1FFF RTC FAST MPU

RTC SLOW 8 KB 0x5000_0000 0x5000_1FFF RTC SLOW MPU

Static MPUs

ROM0, ROM1, the lower 64 KB of SRAM0, SRAM1 and the lower 72 KB of SRAM2 are governed by a static

MPU. The behaviour of these MPUs are hardwired and cannot be configured by software. They moderate access

to the memory region solely through the PID of the current process. When the PID of the process is 0 or 1, the

memory can be read (and written when it is RAM) using the addresses specified in Table 63. When it is 2 ~ 7, the

memory cannot be accessed.

Espressif Systems 316 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

RTC FAST & RTC SLOW MPU

The 8 KB RTC FAST Memory as well as the 8 KB of RTC SLOW Memory are governed by two configurable

MPUs. The MPUs can be configured to allow or deny access to each individual PID, using the

RTC_CNTL_RTC_PID_CONFIG_REG and DPORT_AHBLITE_MPU_TABLE_RTC_REG registers. Setting a bit in

these registers will allow the corresponding PID to read or write from the memory; clearing the bit disallows

access. Access for PID 0 and 1 to RTC SLOW memory cannot be configured and is always enabled. Table 64

and 65 define the bit-to-PID mappings of the registers.

Table 64: MPU for RTC FAST Memory

Boundary address Authority

Size
Low High

PID

RTC_CNTL_RTC_PID_CONFIG bit

8 KB 0x3FF8_0000 0x3FF8_1FFF 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 78 KB 0x400C_0000 0x400C_1FFF

Table 65: MPU for RTC SLOW Memory

Boundary address Authority

Size
Low High PID = 0/1

PID

DPORT_AHBLITE_MPU_TABLE_RTC_REG bit

8 KB 0x5000_0000 0x5000_1FFF Read/Write
2 3 4 5 6 7

0 1 2 3 4 5

Register RTC_CNTL_RTC_PID_CONFIG_REG is part of the RTC peripheral and can only be modified by

processes with a PID of 0; register DPORT_AHBLITE_MPU_TABLE_RTC_REG is a Dport register and can be

changed by processes with a PID of 0 or 1.

SRAM0 and SRAM2 upper 128 KB MMUs

Both the upper 128 KB of SRAM0 and the upper 128 KB of SRAM2 are governed by an MMU. Not only can

these MMUs allow or deny access to the memory they govern (just like the MPUs do), but they are also capable

of translating the address a CPU reads from or writes to (which is a virtual address) to a possibly different address

in memory (the physical address).

In order to accomplish this, the internal RAM MMUs divide the memory range they govern into 16 pages. The

page size is configurable as 8 KB, 4 KB and 2 KB. When the page size is 8 KB, the 16 pages span the entire 128

KB memory region; when the page size is 4 KB or 2 KB, a non-MMU-covered region of 64 or 96 KB,

respectively, will exist at the end of the memory space. Similar to the virtual and physical addresses, it is also

possible to imagine the pages as having a virtual and physical component. The MMU can convert an address

within a virtual page to an address within a physical page.

For PID 0 and 1, this mapping is 1-to-1, meaning that a read from or write to a certain virtual page will always be

converted to a read from or write to the exact same physical page. This allows an operating system, running

under PID 0 and/or 1, to always have access to the entire physical memory range.

For PID 2 to 7, however, every virtual page can be reconfigured, on a per-PID basis, to map to a different physical

page. This way, reads and writes to an offset within a virtual page get translated into reads and writes to the

Espressif Systems 317 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

same offset within a different physical page. This is illustrated in Figure 68: the CPU (running a process with a PID

between 2 to 7) tries to access memory address 0x3FFC_2345. This address is within the virtual Page 1 memory

region, at offset 0x0345. The MMU is instructed that for this particular PID, it should translate an access to virtual

page 1 into physical Page 2. This causes the memory access to be redirected to the same offset as the virtual

memory access, yet in Page 2, which results in the effective access of physical memory address 0x3FFC_4345.

The page size in this example is 8 KB.

PAGE 0

PAGE 1

PAGE 2

PAGE 15

3FFC_0000

3FFC_2000

3FFC_4000

3FFC_6000

3FFD_E000

3FFE_0000

PAGE 0

PAGE 1

PAGE 2

PAGE 15

3FFC_0000

3FFC_2000

3FFC_4000

3FFC_6000

3FFD_E000

3FFE_0000

VIRTUAL MMU PHYSICALCPU

3FFC_2345

3FFC_4345

Figure 68: MMU Access Example

Table 66: Page Mode of MMU for the Remaining 128 KB of Internal SRAM0 and SRAM2

DPORT_IMMU_PAGE_MODE DPORT_DMMU_PAGE_MODE Page size

0 0 8 KB

1 1 4 KB

2 2 2 KB

Non-MMU Governed Memory

For the MMU-managed region of SRAM0 and SRAM2, the page size is configurable as 8 KB, 4 KB and 2 KB.

The configuration is done by setting the DPORT_IMMU_PAGE_MODE (for SRAM0) and

DPORT_DMMU_PAGE_MODE (for SRAM2) bits in registers DPORT_IMMU_PAGE_MODE_REG and

DPORT_DMMU_PAGE_MODE_REG, as detailed in Table 66. Because the number of pages for either region is

fixed at 16, the total amount of memory covered by these pages is 128 KB when 8 KB pages are selected, 64

KB when 4 KB pages are selected, and 32 KB when 2 KB pages are selected. This implies that for 8 KB pages,

the entire MMU-managed range is used, but for the other page sizes there will be a part of the 128 KB memory

that will not be governed by the MMU settings. Concretely, for a page size of 4 KB, these regions are

0x4009_0000 to 0x4009_FFFF and 0x3FFD_0000 to 0x3FFD_FFFF; for a page size of 2 KB, the regions are

0x4008_8000 to 0x4009_FFFF and 0x3FFC_8000 to 0x3FFD_FFFF. These ranges are readable and writable by

processes with a PID of 0 or 1; processes with other PIDs cannot access this memory.

The layout of the pages in memory space is linear, namely, an SRAM0 MMU page n covers address space

0x40080000 + (pagesize ∗ n) to 0x40080000 + (pagesize ∗ (n+ 1)− 1); similarily, an SRAM2 MMU page n covers

0x3FFC0000 + (pagesize ∗ n) to 0x3FFC0000 + (pagesize ∗ (n+ 1)− 1). Tables 67 and 68 show the resulting

addresses in full.

Espressif Systems 318 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

Table 67: Page Boundaries for SRAM0 MMU

8 KB Pages 4 KB Pages 2 KB Pages
Page

Bottom Top Bottom Top Bottom Top

0 40080000 40081FFF 40080000 40080FFF 40080000 400807FF

1 40082000 40083FFF 40081000 40081FFF 40080800 40080FFF

2 40084000 40085FFF 40082000 40082FFF 40081000 400817FF

3 40086000 40087FFF 40083000 40083FFF 40081800 40081FFF

4 40088000 40089FFF 40084000 40084FFF 40082000 400827FF

5 4008A000 4008BFFF 40085000 40085FFF 40082800 40082FFF

6 4008C000 4008DFFF 40086000 40086FFF 40083000 400837FF

7 4008E000 4008FFFF 40087000 40087FFF 40083800 40083FFF

8 40090000 40091FFF 40088000 40088FFF 40084000 400847FF

9 40092000 40093FFF 40089000 40089FFF 40084800 40084FFF

10 40094000 40095FFF 4008A000 4008AFFF 40085000 400857FF

11 40096000 40097FFF 4008B000 4008BFFF 40085800 40085FFF

12 40098000 40099FFF 4008C000 4008CFFF 40086000 400867FF

13 4009A000 4009BFFF 4008D000 4008DFFF 40086800 40086FFF

14 4009C000 4009DFFF 4008E000 4008EFFF 40087000 400877FF

15 4009E000 4009FFFF 4008F000 4008FFFF 40087800 40087FFF

Rest - - 40090000 4009FFFF 4008800 4009FFFF

Table 68: Page Boundaries for SRAM2 MMU

8 KB Pages 4 KB Pages 2 KB Pages
Page

Bottom Top Bottom Top Bottom Top

0 3FFC0000 3FFC1FFF 3FFC0000 3FFC0FFF 3FFC0000 3FFC07FF

1 3FFC2000 3FFC3FFF 3FFC1000 3FFC1FFF 3FFC0800 3FFC0FFF

2 3FFC4000 3FFC5FFF 3FFC2000 3FFC2FFF 3FFC1000 3FFC17FF

3 3FFC6000 3FFC7FFF 3FFC3000 3FFC3FFF 3FFC1800 3FFC1FFF

4 3FFC8000 3FFC9FFF 3FFC4000 3FFC4FFF 3FFC2000 3FFC27FF

5 3FFCA000 3FFCBFFF 3FFC5000 3FFC5FFF 3FFC2800 3FFC2FFF

6 3FFCC000 3FFCDFFF 3FFC6000 3FFC6FFF 3FFC3000 3FFC37FF

7 3FFCE000 3FFCFFFF 3FFC7000 3FFC7FFF 3FFC3800 3FFC3FFF

8 3FFD0000 3FFD1FFF 3FFC8000 3FFC8FFF 3FFC4000 3FFC47FF

9 3FFD2000 3FFD3FFF 3FFC9000 3FFC9FFF 3FFC4800 3FFC4FFF

10 3FFD4000 3FFD5FFF 3FFCA000 3FFCAFFF 3FFC5000 3FFC57FF

11 3FFD6000 3FFD7FFF 3FFCB000 3FFCBFFF 3FFC5800 3FFC5FFF

12 3FFD8000 3FFD9FFF 3FFCC000 3FFCCFFF 3FFC6000 3FFC67FF

13 3FFDA000 3FFDBFFF 3FFCD000 3FFCDFFF 3FFC6800 3FFC6FFF

14 3FFDC000 3FFDDFFF 3FFCE000 3FFCEFFF 3FFC7000 3FFC77FF

15 3FFDE000 3FFDFFFF 3FFCF000 3FFCFFFF 3FFC7800 3FFC7FFF

Rest - - 3FFD0000 3FFDFFFF 3FFC8000 3FFDFFFF

Espressif Systems 319 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

MMU Mapping

For each of the SRAM0 and SRAM2 MMUs, access rights and virtual to physical page mapping are done by a

set of 16 registers. In contrast to most of the other MMUs, each register controls a physical page, not a virtual

one. These registers control which of the PIDs have access to the physical memory, as well as which virtual page

maps to this physical page. The bits in the register are described in Table 69. Keep in mind that these registers

only govern accesses from processes with PID 2 to 7; PID 0 and 1 always have full read and write access to all

pages and no virtual-to-physical mapping is done. In other words, if a process with a PID of 0 or 1 accesses

virtual page x, the access will always go to physical page x, regardless of these register settings. These registers,

as well as the page size selection registers DPORT_IMMU_PAGE_MODE_REG and

DPORT_DMMU_PAGE_MODE_REG, are only writable from a process with PID 0 or 1.

Table 69: DPORT_DMMU_TABLEn_REG & DPORT_IMMU_TABLEn_REG

[6:4] Access rights for PID 2 ~ 7

0 None of PIDs 2 ~ 7 have access.

1 All of PIDs 2 ~ 7 have access.

2 Only PID 2 has access.

3 Only PID 3 has access.

4 Only PID 4 has access.

5 Only PID 5 has access.

6 Only PID 6 has access.

7 Only PID 7 has access.

[3:0] Address authority

0x00 Virtual page 0 accesses this physical page.

0x01 Virtual page 1 accesses this physical page.

0x02 Virtual page 2 accesses this physical page.

0x03 Virtual page 3 accesses this physical page.

0x04 Virtual page 4 accesses this physical page.

0x05 Virtual page 5 accesses this physical page.

0x06 Virtual page 6 accesses this physical page.

0x07 Virtual page 7 accesses this physical page.

0x08 Virtual page 8 accesses this physical page.

0x09 Virtual page 9 accesses this physical page.

0x10 Virtual page 10 accesses this physical page.

0x11 Virtual page 11 accesses this physical page.

0x12 Virtual page 12 accesses this physical page.

0x13 Virtual page 13 accesses this physical page.

0x14 Virtual page 14 accesses this physical page.

0x15 Virtual page 15 accesses this physical page.

Differences Between SRAM0 and SRAM2 MMU

The memory governed by the SRAM0 MMU is accessed through the processors I-bus, while the processor

accesses the memory governed by the SRAM2 MMU through the D-bus. Thus, the normal envisioned use is for

the code to be stored in the SRAM0 MMU pages and data in the MMU pages of SRAM2. In general, applications

running under a PID of 2 to 7 are not expected to modify their own code, because for these PIDs access to the

MMU pages of SRAM0 is read-only. These applications must, however, be able to modify their data section, so

that they are allowed to read as well as write MMU pages located in SRAM2. As stated before, processes

running under PID 0 or 1 always have full read-and-write access to both memory ranges.

DMA MPU

Applications may want to configure the DMA to send data straight from or to the peripherals they can control.

With access to DMA, a malicious process may also be able to copy data from or to a region it cannot normally

Espressif Systems 320 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

access. In order to be secure against that scenario, there is a DMA MPU which can be used to disallow DMA

transfers from memory regions with sensitive data in them.

For each 8 KB region in the SRAM1 and SRAM2 regions, there is a bit in the DPORT_AHB_MPU_TABLE_n_REG

registers which tells the MPU to either allow or disallow DMA access to this region. The DMA MPU uses only

these bits to decide if a DMA transfer can be started; the PID of the process is not a factor. This means that

when the OS wants to restrict its processes in a heterogenous fashion, it will need to re-load these registers with

the values applicable to the process to be run on every context switch.

The register bits that govern access to the 8 KB regions are detailed in Table 70. When a register bit is set, DMA

can read/write the corresponding 8 KB memory range. When the bit is cleared, access to that memory range is

denied.

Table 70: MPU for DMA

Boundary address Authority
Size

Low High Register Bit

Internal SRAM 2

8 KB 0x3FFA_E000 0x3FFA_FFFF DPORT_AHB_MPU_TABLE_0_REG 0

8 KB 0x3FFB_0000 0x3FFB_1FFF DPORT_AHB_MPU_TABLE_0_REG 1

8 KB 0x3FFB_2000 0x3FFB_3FFF DPORT_AHB_MPU_TABLE_0_REG 2

8 KB 0x3FFB_4000 0x3FFB_5FFF DPORT_AHB_MPU_TABLE_0_REG 3

8 KB 0x3FFB_6000 0x3FFB_7FFF DPORT_AHB_MPU_TABLE_0_REG 4

8 KB 0x3FFB_8000 0x3FFB_9FFF DPORT_AHB_MPU_TABLE_0_REG 5

8 KB 0x3FFB_A000 0x3FFB_BFFF DPORT_AHB_MPU_TABLE_0_REG 6

8 KB 0x3FFB_C000 0x3FFB_DFFF DPORT_AHB_MPU_TABLE_0_REG 7

8 KB 0x3FFB_E000 0x3FFB_FFFF DPORT_AHB_MPU_TABLE_0_REG 8

8 KB 0x3FFC_0000 0x3FFC_1FFF DPORT_AHB_MPU_TABLE_0_REG 9

8 KB 0x3FFC_2000 0x3FFC_3FFF DPORT_AHB_MPU_TABLE_0_REG 10

8 KB 0x3FFC_4000 0x3FFC_5FFF DPORT_AHB_MPU_TABLE_0_REG 11

8 KB 0x3FFC_6000 0x3FFC_7FFF DPORT_AHB_MPU_TABLE_0_REG 12

8 KB 0x3FFC_8000 0x3FFC_9FFF DPORT_AHB_MPU_TABLE_0_REG 13

8 KB 0x3FFC_A000 0x3FFC_BFFF DPORT_AHB_MPU_TABLE_0_REG 14

8 KB 0x3FFC_C000 0x3FFC_DFFF DPORT_AHB_MPU_TABLE_0_REG 15

8 KB 0x3FFC_E000 0x3FFC_FFFF DPORT_AHB_MPU_TABLE_0_REG 16

8 KB 0x3FFD_0000 0x3FFD_1FFF DPORT_AHB_MPU_TABLE_0_REG 17

8 KB 0x3FFD_2000 0x3FFD_3FFF DPORT_AHB_MPU_TABLE_0_REG 18

8 KB 0x3FFD_4000 0x3FFD_5FFF DPORT_AHB_MPU_TABLE_0_REG 19

8 KB 0x3FFD_6000 0x3FFD_7FFF DPORT_AHB_MPU_TABLE_0_REG 20

8 KB 0x3FFD_8000 0x3FFD_9FFF DPORT_AHB_MPU_TABLE_0_REG 21

8 KB 0x3FFD_A000 0x3FFD_BFFF DPORT_AHB_MPU_TABLE_0_REG 22

8 KB 0x3FFD_C000 0x3FFD_DFFF DPORT_AHB_MPU_TABLE_0_REG 23

8 KB 0x3FFD_E000 0x3FFD_FFFF DPORT_AHB_MPU_TABLE_0_REG 24

Internal SRAM 1

8 KB 0x3FFE_0000 0x3FFE_1FFF DPORT_AHB_MPU_TABLE_0_REG 25

8 KB 0x3FFE_2000 0x3FFE_3FFF DPORT_AHB_MPU_TABLE_0_REG 26

8 KB 0x3FFE_4000 0x3FFE_5FFF DPORT_AHB_MPU_TABLE_0_REG 27

8 KB 0x3FFE_6000 0x3FFE_7FFF DPORT_AHB_MPU_TABLE_0_REG 28

Espressif Systems 321 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

Boundary address Authority
Size

Low High Register Bit

8 KB 0x3FFE_8000 0x3FFE_9FFF DPORT_AHB_MPU_TABLE_0_REG 29

8 KB 0x3FFE_A000 0x3FFE_BFFF DPORT_AHB_MPU_TABLE_0_REG 30

8 KB 0x3FFE_C000 0x3FFE_DFFF DPORT_AHB_MPU_TABLE_0_REG 31

8 KB 0x3FFE_E000 0x3FFE_FFFF DPORT_AHB_MPU_TABLE_1_REG 0

8 KB 0x3FFF_0000 0x3FFF_1FFF DPORT_AHB_MPU_TABLE_1_REG 1

8 KB 0x3FFF_2000 0x3FFF_3FFF DPORT_AHB_MPU_TABLE_1_REG 2

8 KB 0x3FFF_4000 0x3FFF_5FFF DPORT_AHB_MPU_TABLE_1_REG 3

8 KB 0x3FFF_6000 0x3FFF_7FFF DPORT_AHB_MPU_TABLE_1_REG 4

8 KB 0x3FFF_8000 0x3FFF_9FFF DPORT_AHB_MPU_TABLE_1_REG 5

8 KB 0x3FFF_A000 0x3FFF_BFFF DPORT_AHB_MPU_TABLE_1_REG 6

8 KB 0x3FFF_C000 0x3FFF_DFFF DPORT_AHB_MPU_TABLE_1_REG 7

8 KB 0x3FFF_E000 0x3FFF_FFFF DPORT_AHB_MPU_TABLE_1_REG 8

Registers DPROT_AHB_MPU_TABLE_0_REG�DPROT_AHB_MPU_TABLE_1_REG are located in the DPort

address space. Only processes with a PID of 0 or 1 can modify these two registers.

20.3.2.2 External Memory

Accesses to the external flash and external SPI RAM are done through a cache and are also handled by an

MMU. This Cache MMU can apply different mappings, depending on the PID of the process as well as the CPU

the process is running on. The MMU does this in a way that is similar to the internal memory MMU, that is, for

every page of virtual memory, it has a register detailing which physical page this virtual page should map to.

There are differences between the MMUs governing the internal memory and the Cache MMU, though. First of

all, the Cache MMU has a fixed page size (which is 64 KB for external flash and 32 KB for external RAM) and

secondly, instead of specifying access rights in the MMU entries, the Cache MMU has explicit mapping tables for

each PID and processor core. The MMU mapping configuration registers will be referred to as ’entries’ in the rest

of this chapter. These registers are only accessible from processes with a PID of 0 or 1; processes with a PID of 2

to 7 will have to delegate to one of the above-mentioned processes to change their MMU settings.

The MMU entries, as stated before, are used for mapping a virtual memory page access to a physical memory

page access. The MMU controls five regions of virtual address space, detailed in Table 71. V Addr1 to V Addr4

are used for accessing external flash, whereas V AddrRAM is used for accessing external RAM. Note that

V Addr4 is a subset of V Addr0.

Espressif Systems 322 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

Table 71: Virtual Address for External Memory

Boundary address
Name Size

Low High
Page quantity

V Addr0 4 MB 0x3F40_0000 0x3F7F_FFFF 64

V Addr1 4 MB 0x4000_0000 0x403F_FFFF 64*

V Addr2 4 MB 0x4040_0000 0x407F_FFFF 64

V Addr3 4 MB 0x4080_0000 0x40BF_FFFF 64

V Addr4 1 MB 0x3F40_0000 0x3F4F_FFFF 16

V AddrRAM 4 MB 0x3F80_0000 0x3FBF_FFFF 128

* The configuration entries for address range 0x4000_0000 ~ 0x403F_FFFF are implemented and docu-

mented as if it were a full 4 MB address range, but it is not accessible as such. Instead, the address range

0x4000_0000 ~ 0x400C_1FFF accesses on-chip memory. This means that some of the configuration entries for

V Addr1 will not be used.

External Flash

For flash, the relationships among entry numbers, virtual memory ranges, and PIDs are detailed in Tables 72 and

73, which for every memory region and PID combination specify the first MMU entry governing the mapping. This

number refers to the MMU entry governing the very first page; the entire region is described by the amount of

pages specified in the ’count’ column.

These two tables are essentially the same, with the sole difference being that the APP_CPU entry numbers are

2048 higher than the corresponding PRO_CPU numbers. Note that memory regions V Addr0 and V Addr1 are

only accessible using PID 0 and 1, while V Addr4 can only be accessed by PID 2 ~ 7.

Table 72: MMU Entry Numbers for PRO_CPU

First MMU entry for PID
VAddr Count

0/1 2 3 4 5 6 7

V Addr0 64 0 - - - - - -

V Addr1 64 64 - - - - - -

V Addr2 64 128 256 384 512 640 768 896

V Addr3 64 192 320 448 576 704 832 960

V Addr4 16 - 1056 1072 1088 1104 1120 1136

Table 73: MMU Entry Numbers for APP_CPU

First MMU entry for PID
VAddr Count

0/1 2 3 4 5 6 7

V Addr0 64 2048 - - - - - -

V Addr1 64 2112 - - - - - -

V Addr2 64 2176 2304 2432 2560 2688 2816 2944

V Addr3 64 2240 2368 2496 2624 2752 2880 3008

V Addr4 16 - 3104 3120 3136 3152 3168 3184

As these tables show, virtual address V Addr1 can only be used by processes with a PID of 0 or 1. There is a

Espressif Systems 323 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

special mode to allow processes with a PID of 2 to 7 to read the External Flash via address V Addr1. When the

DPORT_PRO_SINGLE_IRAM_ENA bit of register DPORT_PRO_CACHE_CTRL_REG is 1, the MMU enters this

special mode for PRO_CPU memory accesses. Similarily, when the DPORT_APP_SINGLE_IRAM_ENA bit of

register DPORT_APP_CACHE_CTRL_REG is 1, the APP_CPU accesses memory using this special mode. In this

mode, the process and virtual address page supported by each configuration entry of MMU are different. For

details please see Table 74 and 75. As shown in these tables, in this special mode V Addr2 and V Addr3 cannot

be used to access External Flash.

Table 74: MMU Entry Numbers for PRO_CPU (Special Mode)

First MMU entry for PID
VAddr Count

0/1 2 3 4 5 6 7

V Addr0 64 0 - - - - - -

V Addr1 64 64 256 384 512 640 768 896

V Addr2 64 - - - - - - -

V Addr3 64 - - - - - - -

V Addr4 16 - 1056 1072 1088 1104 1120 1136

Table 75: MMU Entry Numbers for APP_CPU (Special Mode)

First MMU entry for PID
VAddr Count

0/1 2 3 4 5 6 7

V Addr0 64 2048 - - - - - -

V Addr1 64 2112 2304 2432 2560 2688 2816 2944

V Addr2 64 - - - - - - -

V Addr3 64 - - - - - - -

V Addr4 16 - 3104 3120 3136 3152 3168 3184

Every configuration entry of MMU maps a virtual address page of a CPU process to a physical address page. An

entry is 32 bits wide. Of these, bits 0~7 indicate the physical page the virtual page is mapped to. Bit 8 should be

cleared to indicate that the MMU entry is valid; entries with this bit set will not map any physical address to the

virtual address. Bits 10 to 32 are unused and should be written as zero. Because there are eight address bits in

an MMU entry, and the page size for external flash is 64 KB, a maximum of 256 * 64 KB = 16 MB of external flash

is supported.

Examples

Example 1. A PRO_CPU process, with a PID of 1, needs to read external flash address 0x07_2375 via virtual

address 0x3F70_2375. The MMU is not in the special mode.

• According to Table 71, virtual address 0x3F70_2375 resides in the 0x30’th page of V Addr0.

• According to Table 72, the MMU entry for V Addr0 for PID 0/1 for the PRO_CPU starts at 0.

• The modified MMU entry is 0 + 0x30 = 0x30.

• Address 0x07_2375 resides in the 7’th 64 KB-sized page.

• MMU entry 0x30 needs to be set to 7 and marked as valid by setting the 8’th bit to 0. Thus, 0x007 is

written to MMU entry 0x30.

Espressif Systems 324 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

Example 2. An APP_CPU process, with a PID of 4, needs to read external flash address 0x44_048C via virtual

address 0x4044_048C. The MMU is not in special mode.

• According to Table 71, virtual address 0x4044_048C resides in the 0x4’th page of V Addr2.

• According to Table 73, the MMU entry for V Addr2 for PID 4 for the APP_CPU starts at 2560.

• The modified MMU entry is 2560 + 0x4 = 2564.

• Address 0x44_048C resides in the 0x44’th 64 KB-sized page.

• MMU entry 2564 needs to be set to 0x44 and marked as valid by setting the 8’th bit to 0. Thus, 0x044 is

written to MMU entry 2564.

External RAM

Processes running on PRO_CPU and APP_CPU can read and write External SRAM via the Cache at virtual

address range V AddrRAM , which is 0x3F80_0000 ~ 0x3FBF_FFFF. As with the flash MMU, the address space

and the physical memory are divided into pages. For the External RAM MMU, the page size is 32 KB and the

MMU is able to map 256 physical pages into the virtual address space, allowing for 32 KB * 256 = 8 MB of

physical external RAM to be mapped.

The mapping of virtual pages into this memory range depends on the mode this MMU is in: Low-High mode,

Even-Odd mode, or Normal mode. In all cases, the DPORT_PRO_DRAM_HL bit and

DPORT_PRO_DRAM_SPLIT bit in register DPORT_PRO_CACHE_CTRL_REG, the DPORT_APP_DRAM_HL bit

and DPORT_APP_DRAM_SPLIT bit in register DPORT_APP_CACHE_CTRL_REG determine the virtual address

mode for External SRAM. For details, please see Table 76. If a different mapping for the PRO_CPU and

APP_CPU is required, the Normal Mode should be selected, as it is the only mode that can provide this. If it is

allowable for the PRO_CPU and the APP_CPU to share the same mapping, using either High-Low or Even-Odd

mode can give a speed gain when both CPUs access memory frequently.

In case the APP_CPU cache is disabled, which renders the region of 0x4007_8000 to 0x4007_FFFF usable as

normal internal RAM, the usability of the various cache modes changes. Normal mode will allow PRO_CPU

access to external RAM to keep functioning, but the APP_CPU will be unable to access the external RAM.

High-Low mode allows both CPUs to use external RAM, but only for the 2 MB virtual memory addresses from

0x3F80_0000 to 0x3F9F_FFFF. It is not advised to use Even-Odd mode with the APP_CPU cache region

disabled.

Table 76: Virtual Address Mode for External SRAM

Mode
DPORT_PRO_DRAM_HL

DPORT_APP_DRAM_HL

DPORT_PRO_DRAM_SPLIT

DPORT_APP_DRAM_SPLIT

Low-High 1 0

Even-Odd 0 1

Normal 0 0

In normal mode, the virtual-to-physical page mapping can be different for both CPUs. Page mappings for

PRO_CPU are set using the MMU entries for LV AddrRAM , and page mappings for the APP_CPU can be

configured using the MMU entries for RV AddrRAM . In this mode, all 128 pages of both LV Addr and RV Addr

are fully used, allowing a maximum of 8 MB of memory to be mapped; 4 MB into PRO_CPU address space and

a possibly different 4 MB into the APP_CPU address space, as can be seen in Table 77.

Espressif Systems 325 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

Table 77: Virtual Address for External SRAM (Normal Mode)

PRO_CPU address
Virtual address Size

Low High
LV AddrRAM 4 MB 0x3F80_0000 0x3FBF_FFFF

APP_CPU address
Virtual address Size

Low High
RV AddrRAM 4 MB 0x3F80_0000 0x3FBF_FFFF

In Low-High mode, both the PRO_CPU and the APP_CPU use the same mapping entries. In this mode
LV AddrRAM is used for the lower 2 MB of the virtual address space, while RV AddrRAM is used for the upper 2

MB. This also means that the upper 64 MMU entries for LV AddrRAM , as well as the lower 64 entries for
RV AddrRAM , are unused. Table 78 details these address ranges.

Table 78: Virtual Address for External SRAM (Low-High Mode)

PRO_CPU/APP_CPU address
Virtual address Size

Low High
LV AddrRAM 2 MB 0x3F80_0000 0x3F9F_FFFF
RV AddrRAM 2 MB 0x3FA0_0000 0x3FBF_FFFF

In Even-Odd memory, the VRAM is split into 32-byte chunks. The even chunks are resolved through the MMU

entries for LV AddrRAM , the odd chunks through the entries for RV AddrRAM . Generally, the MMU entries for
LV AddrRAM and RV AddrRAM are set to the same values, so that the virtual pages map to a contiguous region

of physical memory. Table 79 details this mode.

Table 79: Virtual Address for External SRAM (Even-Odd Mode)

PRO_CPU/APP_CPU address
Virtual address Size

Low High
LV AddrRAM 32 Bytes 0x3F80_0000 0x3F80_001F
RV AddrRAM 32 Bytes 0x3F80_0020 0x3F80_003F
LV AddrRAM 32 Bytes 0x3F80_0040 0x3F80_005F
RV AddrRAM 32 Bytes 0x3F80_0060 0x3F80_007F

· · ·
LV AddrRAM 32 Bytes 0x3FBF_FFC0 0x3FBF_FFDF
RV AddrRAM 32 Bytes 0x3FBF_FFE0 0x3FBF_FFFF

The bit configuration of the External RAM MMU entries is the same as for the flash memory: the entries are 32-bit

registers, with the lower nine bits being used. Bits 0~7 contain the physical page the entry should map its

associate virtual page address to, while bit 8 is cleared when the entry is valid and set when it is not. Table 80

details the first MMU entry number for LV AddrRAM and RV AddrRAM for all PIDs.

Espressif Systems 326 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

Table 80: MMU Entry Numbers for External RAM

First MMU entry for PID
VAddr Count

0/1 2 3 4 5 6 7
LV AddrRAM 128 1152 1280 1408 1536 1664 1792 1920
RV AddrRAM 128 3200 3328 3456 3584 3712 3840 3968

Examples

Example 1. A PRO_CPU process, with a PID of 7, needs to read or write external RAM address 0x7F_A375 via

virtual address 0x3FA7_2375. The MMU is in Low-High mode.

• According to Table 71, virtual address 0x3FA7_2375 resides in the 0x4E’th 32-KB-page of V AddrRAM .

• According to Table 78, virtual address 0x3FA7_2375 is governed by RV AddrRAM .

• According to Table 80, the MMU entry for RV AddrRAM for PID 7 for the PRO_CPU starts at 3968.

• The modified MMU entry is 3968 + 0x4E = 4046.

• Address 0x7F_A375 resides in the 255’th 32 KB-sized page.

• MMU entry 4046 needs to be set to 255 and marked as valid by clearing the 8’th bit. Thus, 0x0FF is written

to MMU entry 4046.

Example 2. An APP_CPU process, with a PID of 5, needs to read or write external RAM address 0x55_5805 up

to 0x55_5823 starting at virtual address 0x3F85_5805. The MMU is in Even-Odd mode.

• According to Table 71, virtual address 0x3F85_5805 resides in the 0x0A’th 32-KB-page of V AddrRAM .

• According to Table 79, the range to be read/written spans both a 32-byte region in RV AddrRAM and
LV AddrRAM .

• According to Table 80, the MMU entry for LV AddrRAM for PID 5 starts at 1664.

• According to Table 80, the MMU entry for RV AddrRAM for PID 5 starts at 3712.

• The modified MMU entries are 1664 + 0x0A = 1674 and 3712 + 0x0A = 3722.

• The addresses 0x55_5805 to 0x55_5823 reside in the 0xAA’th 32 KB-sized page.

• MMU entries 1674 and 3722 need to be set to 0xAA and marked as valid by setting the 8’th bit to 0. Thus,

0x0AA is written to MMU entries 1674 and 3722. This mapping applies to both the PRO_CPU and the

APP_CPU.

Example 3. A PRO_CPU process, with a PID of 1, and an APP_CPU process whose PID is also 1, need to read

or write external RAM using virtual address 0x3F80_0876. The PRO_CPU needs this region to access physical

address 0x10_0876, while the APP_CPU wants to access physical address 0x20_0876 through this virtual

address. The MMU is in Normal mode.

• According to Table 71, virtual address 0x3F80_0876 resides in the 0’th 32-KB-page of V AddrRAM .

• According to Table 80, the MMU entry for PID 1 for the PRO_CPU starts at 1152.

• According to Table 80, the MMU entry for PID 1 for the APP_CPU starts at 3200.

• The MMU entries that are modified are 1152 + 0 = 1152 for the PRO_CPU and 3200 + 0 = 3200 for the

APP_CPU.

• Address 0x10_0876 resides in the 0x20’th 32 KB-sized page.

• Address 0x20_0876 resides in the 0x40’th 32 KB-sized page.

• For the PRO_CPU, MMU entry 1152 needs to be set to 0x20 and marked as valid by clearing the 8’th bit.

Thus, 0x020 is written to MMU entry 1152.

Espressif Systems 327 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

• For the APP_CPU, MMU entry 3200 needs to be set to 0x40 and marked as valid by clearing the 8’th bit.

Thus, 0x040 is written to MMU entry 3200.

• Now, the PRO_CPU and the APP_CPU can access different physical memory regions through the same

virtual address.

20.3.2.3 Peripheral

The Peripheral MPU manages the 41 peripheral modules. This MMU can be configured per peripheral to only

allow access from a process with a certain PID. The registers to configure this are detailed in Table 81.

Table 81: MPU for Peripheral

Authority
Peripheral

PID = 0/1 PID = 2 ~ 7

DPort Register Access Forbidden

AES Accelerator Access Forbidden

RSA Accelerator Access Forbidden

SHA Accelerator Access Forbidden

Secure Boot Access Forbidden

Cache MMU Table Access Forbidden

PID Controller Access Forbidden

UART0 Access DPORT_AHBLITE_MPU_TABLE_UART_REG

SPI1 Access DPORT_AHBLITE_MPU_TABLE_SPI1_REG

SPI0 Access DPORT_AHBLITE_MPU_TABLE_SPI0_REG

GPIO Access DPORT_AHBLITE_MPU_TABLE_GPIO_REG

RTC Access DPORT_AHBLITE_MPU_TABLE_RTC_REG

IO MUX Access DPORT_AHBLITE_MPU_TABLE_IO_MUX_REG

SDIO Slave Access DPORT_AHBLITE_MPU_TABLE_HINF_REG

UDMA1 Access DPORT_AHBLITE_MPU_TABLE_UHCI1_REG

I2S0 Access DPORT_AHBLITE_MPU_TABLE_I2S0_REG

UART1 Access DPORT_AHBLITE_MPU_TABLE_UART1_REG

I2C0 Access DPORT_AHBLITE_MPU_TABLE_I2C_EXT0_REG

UDMA0 Access DPORT_AHBLITE_MPU_TABLE_UHCI0_REG

SDIO Slave Access DPORT_AHBLITE_MPU_TABLE_SLCHOST_REG

RMT Access DPORT_AHBLITE_MPU_TABLE_RMT_REG

PCNT Access DPORT_AHBLITE_MPU_TABLE_PCNT_REG

SDIO Slave Access DPORT_AHBLITE_MPU_TABLE_SLC_REG

LED PWM Access DPORT_AHBLITE_MPU_TABLE_LEDC_REG

Efuse Controller Access DPORT_AHBLITE_MPU_TABLE_EFUSE_REG

Flash Encryption Access DPORT_AHBLITE_MPU_TABLE_SPI_ENCRYPT_REG

PWM0 Access DPORT_AHBLITE_MPU_TABLE_PWM0_REG

TIMG0 Access DPORT_AHBLITE_MPU_TABLE_TIMERGROUP_REG

TIMG1 Access DPORT_AHBLITE_MPU_TABLE_TIMERGROUP1_REG

SPI2 Access DPORT_AHBLITE_MPU_TABLE_SPI2_REG

SPI3 Access DPORT_AHBLITE_MPU_TABLE_SPI3_REG

SYSCON Access DPORT_AHBLITE_MPU_TABLE_APB_CTRL_REG

Espressif Systems 328 ESP32 Technical Reference Manual V1.8

20. PID/MPU/MMU

Authority
Peripheral

PID = 0/1 PID = 2 ~ 7

I2C1 Access DPORT_AHBLITE_MPU_TABLE_I2C_EXT1_REG

SDMMC Access DPORT_AHBLITE_MPU_TABLE_SDIO_HOST_REG

EMAC Access DPORT_AHBLITE_MPU_TABLE_EMAC_REG

PWM1 Access DPORT_AHBLITE_MPU_TABLE_PWM1_REG

I2S1 Access DPORT_AHBLITE_MPU_TABLE_I2S1_REG

UART2 Access DPORT_AHBLITE_MPU_TABLE_UART2_REG

PWM2 Access DPORT_AHBLITE_MPU_TABLE_PWM2_REG

PWM3 Access DPORT_AHBLITE_MPU_TABLE_PWM3_REG

RNG Access DPORT_AHBLITE_MPU_TABLE_PWR_REG

Each bit of register DPORT_AHBLITE_MPU_TABLE_X_REG determines whether each process can access the

peripherals managed by the register. For details please see Table 82. When a bit of register

DPORT_AHBLITE_MPU_TABLE_X_REG is 1, it means that a process with the corresponding PID can access the

corresponding peripheral of the register. Otherwise, the process cannot access the corresponding

peripheral.

Table 82: DPORT_AHBLITE_MPU_TABLE_X_REG

PID 2 3 4 5 6 7

DPORT_AHBLITE_MPU_TABLE_X_REG bit 0 1 2 3 4 5

All the DPORT_AHBLITE_MPU_TABLE_X_REG registers are in peripheral DPort Register. Only processes with

PID 0/1 can modify these registers.

Espressif Systems 329 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

21. On-Chip Sensors and Analog Signal Processing

21.1 Introduction

ESP32 has three types of built-in sensors for various applications: a capacitive touch sensor with up to 10 inputs,

a Hall effect sensor and a temperature sensor.

The processing of analog signals is done by two successive approximation ADCs (SAR ADC). There are five

controllers dedicated to operating ADCs. This provides flexibility when it comes to converting analog inputs in

both high-performance and low-power modes, with minimum processor overhead.

There is an attractive complement to the input of SAR ADC1, which processes small signals – the low noise

analog amplifier with an adjustable amplification ratio.

ESP32 is also capable of generating analog signals, using two independent DACs and a cosine waveform

generator.

21.2 Capacitive Touch Sensor

21.2.1 Introduction

A touch-sensor system is built on a substrate which carries electrodes and relevant connections under a

protective flat surface; see Figure 69. When a user touches the surface, the capacitance variation is triggered

and a binary signal is generated to indicate whether the touch is valid.

Figure 69: Touch Sensor

21.2.2 Features

• Up to 10 capacitive touch pads / GPIOs

• The sensing pads can be arranged in different combinations, so that a larger area or more points can be

detected.

• The touch pad sensing process is under the control of a hardware-implemented finite-state machine (FSM)

which is initiated by software or a dedicated hardware timer.

• Information that a pad has been touched can be obtained:

Espressif Systems 330 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

– by checking touch-sensor registers directly through software,

– from an interrupt triggered by a touch detection,

– by waking up the CPU from deep sleep upon touch detection.

• Support for low-power operation in the following scenarios:

– CPU waiting in deep sleep and saving power until touch detection and subsequent wake up

– Touch detection managed by the ULP coprocessor

The user program in ULP coprocessor can trigger a scanning process by checking and writing into

specific registers, in order to verify whether the touch threshold is reached.

21.2.3 Available GPIOs

All 10 available sensing GPIOs (pads) are listed in Table 83.

Table 83: ESP32 Capacitive Sensing Touch Pads

Touch Sensing Signal Name Pin Name

T0 GPIO4

T1 GPIO0

T2 GPIO2

T3 MTDO

T4 MTCK

T5 MTDI

T6 MTMS

T7 GPIO27

T8 32K_XN

T9 32K_XP

21.2.4 Functional Description

The internal structure of the touch sensor is shown in Figure 70. The operating flow is shown in Figure 71.

Figure 70: Touch Sensor Structure

The capacitance of a touch pad is periodically charged and discharged. The chart ”Pad Voltage” shows the

charge/discharge voltage that swings from DREFH (reference voltage high) to DREFL (reference voltage low).

Espressif Systems 331 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

During each swing, the touch sensor generates an output pulse, shown in the chart as ”OUT”. The swing slope is

different when the pad is touched (high capacitance) and when it is not (low capacitance). By comparing the

difference between the output pulse counts during the same time interval, we can conclude whether the touch

pad has been touched. TIE_OPT is used to establish the initial voltage level that starts the charge/discharge

cycle.

Figure 71: Touch Sensor Operating Flow

21.2.5 Touch FSM

The Touch FSM performs a measurement sequence described in section 21.2.4. Software can operate the

Touch FSM through dedicated registers. The internal structure of a touch FSM is shown in Figure 72.

The functions of Touch FSM include:

• Receipt of a start signal, either from software or a timer

– when SENS_SAR_TOUCH_START_FORCE=1, SENS_SAR_TOUCH_START_EN is used to initiate a

single measurement

– when SENS_SAR_TOUCH_START_FORCE=0, measurement is triggered periodically with a timer.

The Touch FSM can be active in sleep mode. The SENS_SAR_TOUCH_SLEEP_CYCLES register can be

used to set the cycles. The sensor is operated by FAST_CLK, which normally runs at 8 MHz. More

information on that can be found in chapter Reset and Clock.

• Generation of XPD_TOUCH_BIAS / TOUCH_XPD / TOUCH_START with adjustable timing sequence

To select enabled pads, TOUCH_XPD / TOUCH_START is masked by the 10-bit register

SENS_SAR_TOUCH_PAD_WORKEN.

• Counting of pulses on TOUCH0_OUT ~ TOUCH9_OUT

The result can be read from SENS_SAR_TOUCH_MEAS_OUTn. All ten touch sensors can work

simultaneously.

• Generation of a wakeup interrupt

The FSM regards the touch pads as “touched”, if the number of counted pulses is below the threshold.

The 10-bit registers SENS_TOUCH_PAD_OUTEN1 & SENS_TOUCH_PAD_OUTEN2 define two sets of

touch pads, i.e. SET1 & SET2. If at least one of the pads in SET1 is “touched”, the wakeup interrupt will be

generated by default. It is also possible to configure the wakeup interrupt to be generated only when pads

from both sets are “touched”.

Espressif Systems 332 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Figure 72: Touch FSM Structure

21.3 SAR ADC

21.3.1 Introduction

ESP32 integrates two 12-bit SAR ADCs. They are managed by five SAR ADC controllers, and are able to

measure signals from one to 18 analog pads. It is also possible to measure internal signals, such as vdd33. Some

of the pads can be used to build a programmable gain-amplifier which measures small analog signals.

The SAR ADC controllers have specialized uses. Two of them support high-performance multiple-channel

scanning. Another two are used for low-power operation during deep sleep, and the last one is dedicated to

PWDET / PKDET (power and peak detection). A diagram of the SAR ADCs is shown in Figure 73.

Figure 73: SAR ADC Depiction

Espressif Systems 333 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

21.3.2 Features

• Two SAR ADCs, with simultaneous sampling and conversion

• Up to five SAR ADC controllers for different purposes (e.g. high performance, low power or PWDET /

PKDET).

• Up to 18 analog input pads

• One channel for internal voltage vdd33, two for pa_pkdet (available on selected controllers)

• Low-noise amplifier for small analog signals (available on one controller)

• 12-bit, 11-bit, 10-bit, 9-bit configurable resolution

• DMA support (available on one controller)

• Multiple channel-scanning modes (available on two controllers)

• Operation during deep sleep (available on one controller)

• Controlled by a ULP coprocessor (available on two controllers)

21.3.3 Outline of Function

The SAR ADC module’s major components, and their interconnections, are shown in Figure 74.

Figure 74: SAR ADC Outline of Function

A summary of all the analog signals that may be sent to the SAR ADC module for processing by either ADC1 or

ADC2 is presented in Table 84.

Table 84: Inputs of SAR ADC module

Signal Name Pad # Processed by

VDET_2 7
SAR ADC1

VDET_1 6

Espressif Systems 334 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Signal Name Pad # Processed by

32K_XN 5

32K_XP 4

SENSOR_VN 3

SENSOR_CAPN 2

SENSOR_CAPP 1

SENSOR_VP 0

Hall sensor n/a

GPIO26 9

SAR ADC2

GPIO25 8

GPIO27 7

MTMS 6

MTDI 5

MTCK 4

MTDO 3

GPIO2 2

GPIO0 1

GPIO4 0

pa_pkdet1 n/a

pa_pkdet2 n/a

vdd33 n/a

There are five ADC controllers in ESP32: RTC ADC1 CTRL, RTC ADC2 CTRL, DIG ADC1 CTRL, DIG ADC2

CTRL and PWDET CTRL. The differences between them are summarized in Table 85.

Table 85: ESP32 SAR ADC Controllers

RTC ADC1 RTC ADC2 DIG ADC1 DIG ADC2 PWDET

DAC Y - - - -

Low-Noise Amplifier Y - - - -

Support deep sleep Y Y - - -

ULP coprocessor Y Y - - -

vdd33 - Y - Y -

PWDET/PKDET - - - - Y

Hall sensor Y - - - -

DMA - - Y - -

21.3.4 RTC SAR ADC Controllers

The purpose of SAR ADC controllers in the RTC power domain – RTC ADC1 CTRL and RTC ADC2 CTRL – is to

provide ADC measurement with minimal power consumption in a low frequency.

The outline of a single controller’s function is shown in Figure 75. For each controller, the start of analog-to-digital

conversion can be triggered by register SENS_SAR_MEASn_START_SAR. The measurement’s result can be

obtained from register SENS_SAR_MEASn_DATA_SAR.

Espressif Systems 335 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Figure 75: RTC SAR ADC Outline of Function

The controllers are intertwined with the ULP coprocessor, as the ULP coprocessor has a built-in instruction to

start an ADC measurement. In many cases, the controllers need to cooperate with the ULP coprocessor,

e.g.:

• when periodically monitoring a channel during deep sleep, where the ULP coprocessor is the only trigger

source during this mode;

• when scanning channels continuously in a sequence. Continuous scanning or DMA is not supported by

the controllers. However, it is possible with the help of the ULP coprocessor.

The SAR ADC1 controller supports the low-noise amplifier, as well as DAC. As such, SAR ADC1 can be used in

complex application scenarios.

21.3.5 DIG SAR ADC Controllers

Compared to RTC SAR ADC controllers, DIG SAR ADC controllers have optimized performance and throughput.

Some of their features are:

• High performance; the clock is much faster, therefore, the sample rate is highly increased.

• Multiple-channel scanning mode; there is a pattern table that defines the measurement rule for each SAR

ADC. The scanning mode can be configured as a single mode, double mode, or alternate mode.

• The scanning can be started by software or I2S.

• DMA support; an interrupt will be generated when scanning is finished.

Note:

We do not use the term “start of conversion” in this section, because there is no direct access to starting a single SAR

analog-to-digital conversion. We use “start of scan” instead, which implies that we expect to scan a sequence of channels

with DIG ADC controllers.

Figure 76 shows a diagram of DIG SAR ADC controllers.

Espressif Systems 336 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Figure 76: Diagram of DIG SAR ADC Controllers

The pattern tables contain the measurement rules mentioned above. Each table has 16 items which store

information on channel selection, resolution and attenuation. When scanning starts, the controller reads

measurement rules one-by-one from a pattern table. For each controller the scanning sequence includes 16

different rules at most, before repeating itself.

The 8-bit item (the pattern table register) is composed of three fields that contain channel, resolution and

attenuation information, as shown in Table 86.

Table 86: Fields of the Pattern Table Register

Pattern Table Register [7:0]

ch_sel[3:0] bit_width[1:0] atten[1:0]

channel to be scanned resolution attenuation

There are three scanning modes: single mode, double mode and alternate mode.

• Single mode: channels of either SAR ADC1 or SAR ADC2 will be scanned.

• Double mode: channels of SAR ADC1 and SAR ADC2 will be scanned simultaneously.

• Alternate mode: channels of SAR ADC1 and SAR ADC2 will be scanned alternately.

ESP32 supports up to a 12-bit SAR ADC resolution. The 16-bit data in DMA is composed of the ADC result and

some necessary information related to the scanning mode:

• For single mode, only 4-bit information on channel selection is added.

• For double mode or alternate mode, 4-bit information on channel selection is added plus one extra bit

indicating which SAR ADC was selected.

For each scanning mode there is a corresponding data format, called Type I and Type II. Both data formats are

described in Tables 87 and 88.

Espressif Systems 337 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Table 87: Fields of Type I DMA Data Format

Type I DMA Data Format [15:0]

ch_sel[3:0] data[11:0]

channel SAR ADC data

Table 88: Fields of Type II DMA Data Format

Type II DMA Data Format [15:0]

sar_sel ch_sel[3:0] SAR ADC data[10:0]

SAR ADCn channel SAR ADC data

For Type I the resolution of SAR ADC is up to 12 bits, while for Type II the resolution is 11 bits at most.

DIG SAR ADC Controllers allow the use of I2S for direct memory access. The WS signal of I2S acts as a

measurement-trigger signal. The DATA signal provides the information that the measurement result is ready.

Software can configure APB_SARADC_DATA_TO_I2S, in order to connect ADC to I2S.

21.4 Low-Noise Amplifier

21.4.1 Introduction

ESP32 integrates an analog amplifier designed to amplify a small DC signal that is then passed on to SAR ADC1

for sampling. The amplification gain is adjustable with two off-chip capacitors.

21.4.2 Features

• Configurable gain by changing the value of two sampling capacitors connected to pins SENSOR_CAPP /

SENSOR_VP and SENSOR_CAPN / SENSOR_VN; see Figure 77.

• Designed to operate with other on-chip components like e.g. DAC or ULP coprocessor.

21.4.3 Overview of Function

The structure of the low-noise amplifier is shown in Figure 77:

Figure 77: Structure of Low-Noise Amplifier

Espressif Systems 338 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

The amplifier’s sequence of operation is shown in Figure 78:

Figure 78: Low-Noise Amplifier – Sequence of Operation

1. The process is started by en_sar_amp. The amplifier is powered up and connected to the SAR ADC1.

2. A pulse on amp_rst_fb resets the amplifier. Vin is sampled by charging external capacitors.

3. Finally, amp_short_ref is closed. This starts integrating the Vin sample by the amplifier.

Vampo = Vin · C + Vcm

C is the value of external capacitors in pF. Vcm is the common-mode voltage of the amplifier output, which

is fixed.

If the common-mode voltage input, Vin, is about 0V, amp_short_ref_gnd could take the place of amp_short_ref .

In other cases, the bit controlling this signal should be always cleared. After the Vampo becomes stable, the SAR

ADC1 converts it into a digital value.

Since the low-power amplifier works always together with SAR ADC, it is usually controlled by the FSM in RTC

ADC1 CTRL.

21.5 Hall Sensor

21.5.1 Introduction

The Hall effect is the generation of a voltage difference across an n-type semiconductor passing electrical

current, when a magnetic field is applied to it in a direction perpendicular to that of the flow of the current. The

voltage is proportional to the product of the magnetic field’s strength and current value. A Hall-effect sensor

could be used to measure the strength of a magnetic field, when constant current flows through it, or when the

current is in the presence of a constant magnetic field. As the heart of many applications, the Hall-effect sensors

provide proximity detection, positioning, speed measurement, and current sensing.

Inside of ESP32 there is a Hall sensor for magnetic field-sensing applications, which is designed to feed voltage

signals to the ultra-low noise amplifier and SAR ADC. It can be controlled by the ULP coprocessor, when

low-power operation is required. Such functionality, which enhances the power-processing and flexibility of

ESP32, makes it an attractive solution for position sensing, proximity detection, speed measurement, etc.

Espressif Systems 339 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

21.5.2 Features

• Built-in Hall element with amplifier

• Designed to operate with low-noise amplifier and ADC

• Capable of outputting both analog voltage and digital signals related to the strength of the magnetic field

• Powerful and easy-to-implement functionality, due to its integration with built-in ULP coprocessor, GPIOs,

CPU, Wi-Fi, etc.

21.5.3 Functional Description

The Hall sensor converts the magnetic field into voltage, feeds it into an amplifier, and then outputs it through pin

SENSOR_VP and pin SENSOR_VN. ESP32’s built-in low-noise amplifier and ADC convert the voltage into a

digital value for processing by the CPU in the digital domain.

The inner structure of a Hall sensor is shown in Figure 79.

Figure 79: Hall Sensor

The configuration of a Hall sensor for reading is done with registers SENS_SAR_TOUCH_CTRL1_REG and

RTCIO_HALL_SENS_REG, which are used to power up the Hall sensor and connect it to the low-noise amplifier.

The subsequent processing is done by SAR ADC1. The result is obtained from the RTC ADC1 controller. For

more details, please refer to sections 21.4 and 21.3.

21.6 Temperature Sensor

21.6.1 Introduction

The temperature sensor generates a voltage that changes linearly with temperature. The output voltage is then

converted with ADC into a digital value. The temperature measurement range is -40°C ~ 125°C.

It should be noted that temperature measurements are affected by heat generated by Wi-Fi circuitry. This

depends on power transmission, data transfer, module / PCB construction and the related dispersion of heat.

Also, temperature-versus-voltage characteristics have different offset from chip to chip, due to process variation.

Espressif Systems 340 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Therefore, the temperature sensor is suitable mainly for applications that detect temperature changes rather than

the absolute value of temperature.

Improvement of accuracy in absolute temperature measurement is possible by performing sensor calibration and

by operating ESP32 in low-power modes which reduce variation and the amount of heat generated by the

module itself.

21.6.2 Features

• Temperature measurement range: -40°C to 125°C

• Suitable for applications that detect changes in temperature rather than the absolute value of temperature.

21.6.3 Functional Description

A generic schematic description of the temperature sensor’s operation is provided in Figure 80. The

temperature-sensing device converts the temperature into voltage; then, the ADC samples and converts the

voltage into a digital value. Eventually, this value can be processed by a user application.

Figure 80: Temperature Sensor

The configuration of the temperature sensor is done by using register SENS_SAR_TSENS_CTRL_REG. The

conversion status is available in register SENS_TSENS_RDY_OUT. The measurement result can be read from

SENS_TSENS_OUT.

21.7 DAC

21.7.1 Introduction

Two 8-bit DAC channels can be used to convert digital values into analog output signals (up to two of them). The

design structure is composed of integrated resistor strings and a buffer. This dual DAC supports power supply

and uses it as input voltage reference. The dual DAC also supports independent or simultaneous signal

conversions inside of its channels.

21.7.2 Features

The features of DAC are as follows:

• Two 8-bit DAC channels

• Independent or simultaneous conversion in channels

• Voltage reference from the VDD3P3_RTC pin

Espressif Systems 341 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

• Cosine waveform (CW) generator

• DMA capability

• Start of conversion can be triggered by software or SAR ADC FSM (please refer to the SAR ADC chapter

for more details)

• Can be fully controlled by the ULP coprocessor

A diagram showing the DAC channel’s function is presented in Figure 81. For a detailed description, see the

sections below.

Figure 81: Diagram of DAC function

21.7.3 Structure

The two 8-bit DAC channels can be configured independently. For each DAC channel, the output analog voltage

can be calculated as follows:

DACn_OUT = VDD3P3_RTC · PDACn_DAC/256

• VDD3P3_RTC is the voltage on pin VDD3P3_RTC (typically 3.3V).

• PDACn_DAC has multiple sources: CW generator, register RTCIO_PAD_DACn_REG, and DMA.

The start of conversion is determined by register RTCIO_PAD_PDACn_XPD_DAC. The conversion process itself

is controlled by software or SAR ADC FSM; see Figure 81.

21.7.4 Cosine Waveform Generator

The cosine waveform (CW) generator can be used to generate a cosine / sine tone. A diagram showing cosine

waveform generator’s function is presented in Figure 82.

The CW generator has the following features:

• Adjustable frequency

The frequency of CW can be adjusted by register SENS_SAR_SW_FSTEP[15:0]:

freq = dig_clk_rtc_freq · SENS_SAR_SW_FSTEP/65536

The frequency of dig_clk_rtc is typically 8 MHz.

Espressif Systems 342 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

• Scaling

Configuring register SENS_SAR_DAC_SCALEn[1:0]; the amplitude of a CW can be multiplied by 1, 1/2, 1/4

or 1/8.

• DC offset

The offset may be introduced by register SENS_SAR_DAC_DCn[7:0]. The result will be saturated.

• Phase shift

A phase-shift of 0 / 90 / 180 / 270 degrees can be added by setting register SENS_SAR_DAC_INVn[1:0].

Figure 82: Cosine Waveform (CW) Generator

21.7.5 DMA support

A DMA controller with dual DMA channels can be used to set the output of two DAC channels. By configuring

SENS_SAR_DAC_DIG_FORCE, I2S_clk can be connected to DAC clk, and I2S_DATA_OUT can be connected to

DAC_DATA for direct memory access.

For details, please refer to chapter DMA.

21.8 Register Summary

Note: The registers listed below have been grouped, according to their functionality. This particular grouping

does not reflect the exact sequential order of their place in memory.

21.8.1 Sensors

Name Description Address Access

Touch pad setup and control registers

SENS_SAR_TOUCH_CTRL1_REG Touch pad control 0x3FF48858 R/W

SENS_SAR_TOUCH_CTRL2_REG Touch pad control and status 0x3FF48884 RO

SENS_SAR_TOUCH_ENABLE_REG Wakeup interrupt control and working set 0x3FF4888C R/W

SENS_SAR_TOUCH_THRES1_REG Threshold setup for pads 0 and 1 0x3FF4885C R/W

SENS_SAR_TOUCH_THRES2_REG Threshold setup for pads 2 and 3 0x3FF48860 R/W

SENS_SAR_TOUCH_THRES3_REG Threshold setup for pads 4 and 5 0x3FF48864 R/W

SENS_SAR_TOUCH_THRES4_REG Threshold setup for pads 6 and 7 0x3FF48868 R/W

SENS_SAR_TOUCH_THRES5_REG Threshold setup for pads 8 and 9 0x3FF4886C R/W

SENS_SAR_TOUCH_OUT1_REG Counters for pads 0 and 1 0x3FF48870 RO

Espressif Systems 343 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

SENS_SAR_TOUCH_OUT2_REG Counters for pads 2 and 3 0x3FF48874 RO

SENS_SAR_TOUCH_OUT3_REG Counters for pads 4 and 5 0x3FF48878 RO

SENS_SAR_TOUCH_OUT4_REG Counters for pads 6 and 6 0x3FF4887C RO

SENS_SAR_TOUCH_OUT5_REG Counters for pads 8 and 9 0x3FF48880 RO

SAR ADC control register

SENS_SAR_START_FORCE_REG SAR ADC1 and ADC2 control 0x3FF4882C R/W

SAR ADC1 control registers

SENS_SAR_READ_CTRL_REG SAR ADC1 data and sampling control 0x3FF48800 R/W

SENS_SAR_MEAS_START1_REG SAR ADC1 conversion control and status 0x3FF48854 RO

SAR ADC2 control registers

SENS_SAR_READ_CTRL2_REG SAR ADC2 data and sampling control 0x3FF48890 R/W

SENS_SAR_MEAS_START2_REG SAR ADC2 conversion control and status 0x3FF48894 RO

ULP coprocessor configuration register

SENS_ULP_CP_SLEEP_CYC0_REG Sleep cycles for ULP coprocessor 0x3FF48818 R/W

Pad attenuation configuration registers

SENS_SAR_ATTEN1_REG 2-bit attenuation for each pad 0x3FF48834 R/W

SENS_SAR_ATTEN2_REG 2-bit attenuation for each pad 0x3FF48838 R/W

Temperature sensor registers

SENS_SAR_TSENS_CTRL_REG Temperature sensor configuration 0x3FF4884C R/W

SENS_SAR_SLAVE_ADDR3_REG Temperature sensor readout 0x3FF48844 RO

DAC control registers

SENS_SAR_DAC_CTRL1_REG DAC control 0x3FF48898 R/W

SENS_SAR_DAC_CTRL2_REG DAC output control 0x3FF4889C R/W

21.8.2 Advanced Peripheral Bus

Name Description Address Access

SAR ADC1 and ADC2 common configuration registers

APB_SARADC_CTRL_REG SAR ADC common configuration 0x06002610 R/W

APB_SARADC_CTRL2_REG SAR ADC common configuration 0x06002614 R/W

APB_SARADC_FSM_REG SAR ADC FSM sample cycles configuration 0x06002618 R/W

SAR ADC1 pattern table registers

APB_SARADC_SAR1_PATT_TAB1_REG Items 0 - 3 of pattern table 0x0600261C R/W

APB_SARADC_SAR1_PATT_TAB2_REG Items 4 - 7 of pattern table 0x06002620 R/W

APB_SARADC_SAR1_PATT_TAB3_REG Items 8 - 11 of pattern table 0x06002624 R/W

APB_SARADC_SAR1_PATT_TAB4_REG Items 12 - 15 of pattern table 0x06002628 R/W

SAR ADC2 pattern table registers

APB_SARADC_SAR2_PATT_TAB1_REG Items 0 - 3 of pattern table 0x0600262C R/W

APB_SARADC_SAR2_PATT_TAB2_REG Items 4 - 7 of pattern table 0x06002630 R/W

APB_SARADC_SAR2_PATT_TAB3_REG Items 8 - 11 of pattern table 0x06002634 R/W

APB_SARADC_SAR2_PATT_TAB4_REG Items 12 - 15 of pattern table 0x06002638 R/W

21.8.3 RTC I/O

For details, please refer to Section Register Summary in Chapter IO_MUX and GPIO Matrix.

Espressif Systems 344 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

21.9 Registers

21.9.1 Sensors

Register 21.1: SENS_SAR_READ_CTRL_REG (0x0000)

(re
se

rve
d)

0 0 0

31 29

SENS_S
AR1_

DAT
A_IN

V

0

28

SENS_S
AR1_

DIG
_F

ORCE

0

27

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

26 18

SENS_S
AR1_

SAM
PLE

_B
IT

3

17 16

SENS_S
AR1_

SAM
PLE

_C
YCLE

9

15 8

SENS_S
AR1_

CLK
_D

IV

2

7 0

Reset

SENS_SAR1_DATA_INV Invert SAR ADC1 data. (R/W)

SENS_SAR1_DIG_FORCE 1: SAR ADC1 controlled by DIG ADC1 CTR, 0: SAR ADC1 controlled by

RTC ADC1 CTRL. (R/W)

SENS_SAR1_SAMPLE_BIT Bit width of SAR ADC1, 00: for 9-bit, 01: for 10-bit, 10: for 11-bit, 11:

for 12-bit. (R/W)

SENS_SAR1_SAMPLE_CYCLE Sample cycles for SAR ADC1. (R/W)

SENS_SAR1_CLK_DIV Clock divider. (R/W)

Register 21.2: SENS_ULP_CP_SLEEP_CYC0_REG (0x0018)

200

31 0

Reset

SENS_ULP_CP_SLEEP_CYC0_REG Sleep cycles for ULP coprocessor timer. (R/W)

Espressif Systems 345 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 21.3: SENS_SAR_START_FORCE_REG (0x002c)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

SENS_S
AR1_

STO
P

0

23

SENS_S
AR2_

STO
P

0

22

SENS_P
C_IN

IT

0 0 0 0 0 0 0 0 0 0 0

21 11

(re
se

rve
d)

0

10

SENS_U
LP

_C
P_S

TA
RT_

TO
P

0

9

SENS_U
LP

_C
P_F

ORCE_S
TA

RT_
TO

P

0

8

SENS_S
AR2_

PW
DET_

CCT

0 0 0

7 5

SENS_S
AR2_

EN_T
EST

0

4

SENS_S
AR2_

BIT_
W

ID
TH

1 1

3 2

SENS_S
AR1_

BIT_
W

ID
TH

1 1

1 0

Reset

SENS_SAR1_STOP Stop SAR ADC1 conversion. (R/W)

SENS_SAR2_STOP Stop SAR ADC2 conversion. (R/W)

SENS_PC_INIT Initialized PC for ULP coprocessor. (R/W)

SENS_ULP_CP_START_TOP Write 1 to start ULP coprocessor; it is active only when

reg_ulp_cp_force_start_top = 1. (R/W)

SENS_ULP_CP_FORCE_START_TOP 1: ULP coprocessor is started by SW, 0: ULP coprocessor

is started by timer. (R/W)

SENS_SAR2_PWDET_CCT SAR2_PWDET_CCT, PA power detector capacitance tuning. (R/W)

SENS_SAR2_EN_TEST SAR2_EN_TEST is active only when reg_sar2_dig_force = 0. (R/W)

SENS_SAR2_BIT_WIDTH Bit width of SAR ADC1, 00: 9 bits, 01: 10 bits, 10: 11 bits, 11: 12 bits.

(R/W)

SENS_SAR1_BIT_WIDTH Bit width of SAR ADC2, 00: 9 bits, 01: 10 bits, 10: 11 bits, 11: 12 bits.

(R/W)

Register 21.4: SENS_SAR_ATTEN1_REG (0x0034)

0x0FFFFFFFF

31 0

Reset

SENS_SAR_ATTEN1_REG 2-bit attenuation for each pad, 11: 1 dB, 10: 6 dB, 01: 3 dB, 00: 0 dB,

[1:0] is used for ADC1_CH0, [3:2] is used for ADC1_CH1, etc. (R/W)

Register 21.5: SENS_SAR_ATTEN2_REG (0x0038)

0x0FFFFFFFF

31 0

Reset

SENS_SAR_ATTEN2_REG 2-bit attenuation for each pad, 11: 1 dB, 10: 6 dB, 01: 3 dB, 00: 0 dB,

[1:0] is used for ADC2_CH0, [3:2] is used for ADC2_CH1, etc (R/W)

Espressif Systems 346 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 21.6: SENS_SAR_SLAVE_ADDR3_REG (0x0044)

(re
se

rve
d)

0

31

SENS_T
SENS_R

DY_O
UT

0

30

SENS_T
SENS_O

UT

0x000

29 22

(re
se

rve
d)

0 0

43 22

Reset

SENS_TSENS_RDY_OUT This indicates that the temperature sensor’s output is ready. (RO)

SENS_TSENS_OUT Temperature sensor data output. (RO)

Register 21.7: SENS_SAR_TSENS_CTRL_REG (0x004c)

(re
se

rve
d)

0 0 0 0 0

31 27

SENS_T
SENS_D

UM
P_O

UT

0

26

SENS_T
SENS_P

OW
ER_U

P_F
ORCE

0

25

SENS_T
SENS_P

OW
ER_U

P

0

24

SENS_T
SENS_C

LK
_D

IV

6

23 16

SENS_T
SENS_IN

_IN
V

0

15

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 15

Reset

SENS_TSENS_DUMP_OUT Temperature sensor dump output; active only when

reg_tsens_power_up_force = 1. (R/W)

SENS_TSENS_POWER_UP_FORCE 1: Temperature sensor dump output & power-up controlled by

SW; 0: controlled by FSM. (R/W)

SENS_TSENS_POWER_UP Temperature sensor power-up. (R/W)

SENS_TSENS_CLK_DIV Temperature sensor clock divider. (R/W)

SENS_TSENS_IN_INV Invert temperature sensor data. (R/W)

Espressif Systems 347 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 21.8: SENS_SAR_MEAS_START1_REG (0x0054)

SENS_S
AR1_

EN_P
AD_F

ORCE

0

31

SENS_S
AR1_

EN_P
AD

0 0 0 0 0 0 0 0 0 0 0 0

30 19

SENS_M
EAS1_

STA
RT_

FO
RCE

0

18

SENS_M
EAS1_

STA
RT_

SAR

0

17

SENS_M
EAS1_

DONE_S
AR

0

16

SENS_M
EAS1_

DAT
A_S

AR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

SENS_SAR1_EN_PAD_FORCE 1: SAR ADC1 pad enable bitmap is controlled by SW, 0: SAR ADC1

pad enable bitmap is controlled by ULP coprocessor. (R/W)

SENS_SAR1_EN_PAD SAR ADC1 pad enable bitmap; active only when reg_sar1_en_pad_force =

1. (R/W)

SENS_MEAS1_START_FORCE 1: SAR ADC1 controller (in RTC) is started by SW, 0: SAR ADC1

controller is started by ULP coprocessor. (R/W)

SENS_MEAS1_START_SAR SAR ADC1 controller (in RTC) starts conversion; active only when

reg_meas1_start_force = 1. (R/W)

SENS_MEAS1_DONE_SAR SAR ADC1 conversion-done indication. (RO)

SENS_MEAS1_DATA_SAR SAR ADC1 data. (RO)

Espressif Systems 348 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 21.9: SENS_SAR_TOUCH_CTRL1_REG (0x0058)

(re
se

rve
d)

0 0 0 0

31 28

SENS_H
ALL

_P
HASE_F

ORCE

0

27

SENS_X
PD_H

ALL
_F

ORCE

0

26

SENS_T
OUCH_O

UT_
1E

N

1

25

SENS_T
OUCH_O

UT_
SEL

0

24

SENS_T
OUCH_X

PD_W
AIT

0x004

23 16

SENS_T
OUCH_M

EAS_D
ELA

Y

0x01000

15 0

Reset

SENS_HALL_PHASE_FORCE 1: HALL PHASE is controlled by SW, 0: HALL PHASE is controlled

by FSM in ULP coprocessor. (R/W)

SENS_XPD_HALL_FORCE 1: XPD HALL is controlled by SW, 0: XPD HALL is controlled by FSM in

ULP coprocessor. (R/W)

SENS_TOUCH_OUT_1EN 1: wakeup interrupt is generated if SET1 is touched, 0: wakeup interrupt

is generated only if both SET1 & SET2 are touched. (R/W)

SENS_TOUCH_OUT_SEL 1: the touch pad is considered touched when the value of the counter is

greater than the threshold, 0: the touch pad is considered touched when the value of the counter

is less than the threshold. (R/W)

SENS_TOUCH_XPD_WAIT The waiting time (in 8 MHz cycles) between TOUCH_START and

TOUCH_XPD. (R/W)

SENS_TOUCH_MEAS_DELAY The measurement’s duration (in 8 MHz cycles). (R/W)

Register 21.10: SENS_SAR_TOUCH_THRES1_REG (0x005c)

SENS_T
OUCH_O

UT_
TH

0

0x00000

31 16

SENS_T
OUCH_O

UT_
TH

1

0x00000

15 0

Reset

SENS_TOUCH_OUT_TH0 The threshold for touch pad 0. (R/W)

SENS_TOUCH_OUT_TH1 The threshold for touch pad 1. (R/W)

Espressif Systems 349 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 21.11: SENS_SAR_TOUCH_THRES2_REG (0x0060)

SENS_T
OUCH_O

UT_
TH

2

0x00000

31 16

SENS_T
OUCH_O

UT_
TH

3

0x00000

15 0

Reset

SENS_TOUCH_OUT_TH2 The threshold for touch pad 2. (R/W)

SENS_TOUCH_OUT_TH3 The threshold for touch pad 3. (R/W)

Register 21.12: SENS_SAR_TOUCH_THRES3_REG (0x0064)

SENS_T
OUCH_O

UT_
TH

4

0x00000

31 16

SENS_T
OUCH_O

UT_
TH

5

0x00000

15 0

Reset

SENS_TOUCH_OUT_TH4 The threshold for touch pad 4. (R/W)

SENS_TOUCH_OUT_TH5 The threshold for touch pad 5. (R/W)

Register 21.13: SENS_SAR_TOUCH_THRES4_REG (0x0068)

SENS_T
OUCH_O

UT_
TH

6

0x00000

31 16

SENS_T
OUCH_O

UT_
TH

7

0x00000

15 0

Reset

SENS_TOUCH_OUT_TH6 The threshold for touch pad 6. (R/W)

SENS_TOUCH_OUT_TH7 The threshold for touch pad 7. (R/W)

Espressif Systems 350 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 21.14: SENS_SAR_TOUCH_THRES5_REG (0x006c)

SENS_T
OUCH_O

UT_
TH

8

0x00000

31 16

SENS_T
OUCH_O

UT_
TH

9

0x00000

15 0

Reset

SENS_TOUCH_OUT_TH8 The threshold for touch pad 8. (R/W)

SENS_TOUCH_OUT_TH9 The threshold for touch pad 9. (R/W)

Register 21.15: SENS_SAR_TOUCH_OUT1_REG (0x0070)

SENS_T
OUCH_M

EAS_O
UT0

0x00000

31 16

SENS_T
OUCH_M

EAS_O
UT1

0x00000

15 0

Reset

SENS_TOUCH_MEAS_OUT0 The counter for touch pad 0. (RO)

SENS_TOUCH_MEAS_OUT1 The counter for touch pad 1. (RO)

Register 21.16: SENS_SAR_TOUCH_OUT2_REG (0x0074)

SENS_T
OUCH_M

EAS_O
UT2

0x00000

31 16

SENS_T
OUCH_M

EAS_O
UT3

0x00000

15 0

Reset

SENS_TOUCH_MEAS_OUT2 The counter for touch pad 2. (RO)

SENS_TOUCH_MEAS_OUT3 The counter for touch pad 3. (RO)

Espressif Systems 351 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 21.17: SENS_SAR_TOUCH_OUT3_REG (0x0078)

SENS_T
OUCH_M

EAS_O
UT4

0x00000

31 16

SENS_T
OUCH_M

EAS_O
UT5

0x00000

15 0

Reset

SENS_TOUCH_MEAS_OUT4 The counter for touch pad 4. (RO)

SENS_TOUCH_MEAS_OUT5 The counter for touch pad 5. (RO)

Register 21.18: SENS_SAR_TOUCH_OUT4_REG (0x007c)

SENS_T
OUCH_M

EAS_O
UT6

0x00000

31 16

SENS_T
OUCH_M

EAS_O
UT7

0x00000

15 0

Reset

SENS_TOUCH_MEAS_OUT6 The counter for touch pad 6. (RO)

SENS_TOUCH_MEAS_OUT7 The counter for touch pad 7. (RO)

Register 21.19: SENS_SAR_TOUCH_OUT5_REG (0x0080)

SENS_T
OUCH_M

EAS_O
UT8

0x00000

31 16

SENS_T
OUCH_M

EAS_O
UT9

0x00000

15 0

Reset

SENS_TOUCH_MEAS_OUT8 The counter for touch pad 8. (RO)

SENS_TOUCH_MEAS_OUT9 The counter for touch pad 9. (RO)

Espressif Systems 352 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 21.20: SENS_SAR_TOUCH_CTRL2_REG (0x0084)

(re
se

rve
d)

0

31

SENS_T
OUCH_M

EAS_E
N_C

LR

0

30

SENS_T
OUCH_S

LE
EP_C

YCLE
S

0x00100

29 14

SENS_T
OUCH_S

TA
RT_

FO
RCE

0

13

SENS_T
OUCH_S

TA
RT_

EN

0

12

SENS_T
OUCH_S

TA
RT_

FS
M

_E
N

1

11

SENS_T
OUCH_M

EAS_D
ONE

0

10

SENS_T
OUCH_M

EAS_E
N

0x000

9 0

Reset

SENS_TOUCH_MEAS_EN_CLR Set to clear reg_touch_meas_en. (WO)

SENS_TOUCH_SLEEP_CYCLES Sleep cycles for timer. (R/W)

SENS_TOUCH_START_FORCE 1: starts the Touch FSM via software; 0: starts the Touch FSM via

timer. (R/W)

SENS_TOUCH_START_EN 1: starts the Touch FSM; this is valid when reg_touch_start_force is set.

(R/W)

SENS_TOUCH_START_FSM_EN 1: TOUCH_START & TOUCH_XPD are controlled by the Touch

FSM; 0: TOUCH_START & TOUCH_XPD are controlled by registers. (R/W)

SENS_TOUCH_MEAS_DONE Set to 1 by FSM, indicating that touch measurement is done. (RO)

SENS_TOUCH_MEAS_EN 10-bit register indicating which pads are touched. (RO)

Register 21.21: SENS_SAR_TOUCH_ENABLE_REG (0x008c)

(re
se

rve
d)

0 0

31 30

SENS_T
OUCH_P

AD_O
UTE

N1

0x3FF

29 20

SENS_T
OUCH_P

AD_O
UTE

N2

0x3FF

19 10

SENS_T
OUCH_P

AD_W
ORKEN

0x3FF

9 0

Reset

SENS_TOUCH_PAD_OUTEN1 Bitmap defining SET1 for generating a wakeup interrupt; SET1 is con-

sidered touched if at least one of the touch pads in SET1 is touched. (R/W)

SENS_TOUCH_PAD_OUTEN2 Bitmap defining SET2 for generating a wakeup interrupt; SET2 is con-

sidered touched if at least one of the touch pads in SET2 is touched. (R/W)

SENS_TOUCH_PAD_WORKEN Bitmap defining the working set during measurement. (R/W)

Espressif Systems 353 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 21.22: SENS_SAR_READ_CTRL2_REG (0x0090)

(re
se

rve
d)

0 0

31 30

SENS_S
AR2_

DAT
A_IN

V

0

29

SENS_S
AR2_

DIG
_F

ORCE

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

27 18

SENS_S
AR2_

SAM
PLE

_B
IT

3

17 16

SENS_S
AR2_

SAM
PLE

_C
YCLE

9

15 8

SENS_S
AR2_

CLK
_D

IV

2

7 0

Reset

SENS_SAR2_DATA_INV Invert SAR ADC2 data. (R/W)

SENS_SAR2_DIG_FORCE 1: SAR ADC2 controlled by DIG ADC2 CTRL or PWDET CTRL, 0: SAR

ADC2 controlled by RTC ADC2 CTRL (R/W)

SENS_SAR2_SAMPLE_BIT Bit width of SAR ADC2, 00: for 9-bit, 01: for 10-bit, 10: for 11-bit, 11:

for 12-bit. (R/W)

SENS_SAR2_SAMPLE_CYCLE Sample cycles of SAR ADC2. (R/W)

SENS_SAR2_CLK_DIV Clock divider. (R/W)

Register 21.23: SENS_SAR_MEAS_START2_REG (0x0094)

SENS_S
AR2_

EN_P
AD_F

ORCE

0

31

SENS_S
AR2_

EN_P
AD

0 0 0 0 0 0 0 0 0 0 0 0

30 19

SENS_M
EAS2_

STA
RT_

FO
RCE

0

18

SENS_M
EAS2_

STA
RT_

SAR

0

17

SENS_M
EAS2_

DONE_S
AR

0

16

SENS_M
EAS2_

DAT
A_S

AR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

SENS_SAR2_EN_PAD_FORCE 1: SAR ADC2 pad enable bitmap is controlled by SW, 0: SAR ADC2

pad enable bitmap is controlled by ULP coprocessor. (R/W)

SENS_SAR2_EN_PAD SAR ADC2 pad enable bitmap; active only when reg_sar2_en_pad_force =

1. (R/W)

SENS_MEAS2_START_FORCE 1: SAR ADC2 controller (in RTC) is started by SW, 0: SAR ADC2

controller is started by ULP coprocessor. (R/W)

SENS_MEAS2_START_SAR SAR ADC2 controller (in RTC) starts conversion; active only when

reg_meas2_start_force = 1. (R/W)

SENS_MEAS2_DONE_SAR SAR ADC2-conversion-done indication. (RO)

SENS_MEAS2_DATA_SAR SAR ADC2 data. (RO)

Espressif Systems 354 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 21.24: SENS_SAR_DAC_CTRL1_REG (0x0098)

(re
se

rve
d)

0 0 0 0 0 0

31 26

SENS_D
AC_C

LK
_IN

V

0

25

SENS_D
AC_C

LK
_F

ORCE_H
IG

H

0

24

SENS_D
AC_C

LK
_F

ORCE_L
OW

0

23

SENS_D
AC_D

IG
_F

ORCE

0

22

(re
se

rve
d)

0 0 0 0 0

21 17

SENS_S
W

_T
ONE_E

N

0

16

SENS_S
W

_F
STE

P

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

SENS_DAC_CLK_INV 1: inverts PDAC_CLK, 0: no inversion. (R/W)

SENS_DAC_CLK_FORCE_HIGH forces PDAC_CLK to be 1. (R/W)

SENS_DAC_CLK_FORCE_LOW forces PDAC_CLK to be 0. (R/W)

SENS_DAC_DIG_FORCE 1: DAC1 & DAC2 use DMA, 0: DAC1 & DAC2 do not use DMA. (R/W)

SENS_SW_TONE_EN 1: enable CW generator, 0: disable CW generator. (R/W)

SENS_SW_FSTEP Frequency step for CW generator; can be used to adjust the frequency. (R/W)

Register 21.25: SENS_SAR_DAC_CTRL2_REG (0x009c)

(re
se

rve
d)

0 0 0 0 0 0

31 26

SENS_D
AC_C

W
_E

N2

1

25

SENS_D
AC_C

W
_E

N1

1

24

SENS_D
AC_IN

V2

0 0

23 22

SENS_D
AC_IN

V1

0 0

21 20

SENS_D
AC_S

CALE
2

0 0

19 18

SENS_D
AC_S

CALE
1

0 0

17 16

SENS_D
AC_D

C2

0 0 0 0 0 0 0 0

15 8

SENS_D
AC_D

C1

0 0 0 0 0 0 0 0

7 0

Reset

SENS_DAC_CW_EN2 1: selects CW generator as source for PDAC2_DAC[7:0], 0: selects register

reg_pdac2_dac[7:0] as source for PDAC2_DAC[7:0]. (R/W)

SENS_DAC_CW_EN1 1: selects CW generator as source for PDAC1_DAC[7:0], 0: selects register

reg_pdac1_dac[7:0] as source for PDAC1_DAC[7:0]. (R/W)

SENS_DAC_INV2 DAC2, 00: does not invert any bits, 01: inverts all bits, 10: inverts MSB, 11: inverts

all bits except for MSB. (R/W)

SENS_DAC_INV1 DAC1, 00: does not invert any bits, 01: inverts all bits, 10: inverts MSB, 11: inverts

all bits except for MSB. (R/W)

SENS_DAC_SCALE2 DAC2, 00: no scale, 01: scale to 1/2, 10: scale to 1/4, scale to 1/8. (R/W)

SENS_DAC_SCALE1 DAC1, 00: no scale, 01: scale to 1/2, 10: scale to 1/4, scale to 1/8. (R/W)

SENS_DAC_DC2 DC offset for DAC2 CW generator. (R/W)

SENS_DAC_DC1 DC offset for DAC1 CW generator. (R/W)

Espressif Systems 355 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

21.9.2 Advanced Peripheral Bus

Register 21.26: APB_SARADC_CTRL_REG (0x10)

(re
se

rve
d)

0 0 0 0 0

31 27

APB_S
ARADC_D

AT
A_T

O_I2
S

0

26

APB_S
ARADC_D

AT
A_S

AR_S
EL

0

25

APB_S
ARADC_S

AR2_
PA

TT
_P

_C
LE

AR

0

24

APB_S
ARADC_S

AR1_
PA

TT
_P

_C
LE

AR

0

23

APB_S
ARADC_S

AR2_
PA

TT
_L

EN

15

22 19

APB_S
ARADC_S

AR1_
PA

TT
_L

EN

15

18 15

APB_S
ARADC_S

AR_C
LK

_D
IV

4

14 7

APB_S
ARADC_S

AR_C
LK

_G
AT

ED

1

6

APB_S
ARADC_S

AR_S
EL

0

5

APB_S
ARADC_W

ORK_M
ODE

0

4 3

APB_S
ARADC_S

AR2_
M

UX

0

2

APB_S
ARADC_S

TA
RT

0

1

APB_S
ARADC_S

TA
RT_

FO
RCE

0

0

Reset

APB_SARADC_DATA_TO_I2S 1: I2S input data is from SAR ADC (for DMA), 0: I2S input data is

from GPIO matrix. (R/W)

APB_SARADC_DATA_SAR_SEL 1: sar_sel will be coded by the MSB of the 16-bit output data, in

this case, the resolution should not contain more than 11 bits; 0: using 12-bit SAR ADC resolution.

(R/W)

APB_SARADC_SAR2_PATT_P_CLEAR Clears the pointer of pattern table for DIG ADC2 CTRL.

(R/W)

APB_SARADC_SAR1_PATT_P_CLEAR Clears the pointer of pattern table for DIG ADC1 CTRL.

(R/W)

APB_SARADC_SAR2_PATT_LEN SAR ADC2, 0 - 15 means pattern table length of 1 - 16. (R/W)

APB_SARADC_SAR1_PATT_LEN SAR ADC1, 0 - 15 means pattern table length of 1 - 16. (R/W)

APB_SARADC_SAR_CLK_DIV SAR clock divider. (R/W)

APB_SARADC_SAR_CLK_GATED Reserved. Please initialize to 0b1 (R/W)

APB_SARADC_SAR_SEL 0: SAR1, 1: SAR2, this setting is applicable in the single SAR mode. (R/W)

APB_SARADC_WORK_MODE 0: single mode, 1: double mode, 2: alternate mode. (R/W)

APB_SARADC_SAR2_MUX 1: SAR ADC2 is controlled by DIG ADC2 CTRL, 0: SAR ADC2 is con-

trolled by PWDET CTRL. (R/W)

APB_SARADC_START Reserved. Please initialize to 0 (R/W)

APB_SARADC_START_FORCE Reserved. Please initialize to 0 (R/W)

Espressif Systems 356 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 21.27: APB_SARADC_CTRL2_REG (0x14)

(re
se

rve
d)

0 0

31 11

APB_S
ARADC_S

AR2_
IN

V

0

10

APB_S
ARADC_S

AR1_
IN

V

0

9

APB_S
ARADC_M

AX_
M

EAS_N
UM

255

8 1

APB_S
ARADC_M

EAS_N
UM

_L
IM

IT

0

0

Reset

APB_SARADC_SAR2_INV 1: data to DIG ADC2 CTRL is inverted, 0: data is not inverted. (R/W)

APB_SARADC_SAR1_INV 1: data to DIG ADC1 CTRL is inverted, 0: data is not inverted. (R/W)

APB_SARADC_MAX_MEAS_NUM Max conversion number. (R/W)

APB_SARADC_MEAS_NUM_LIMIT Reserved. Please initialize to 0b1 (R/W)

Register 21.28: APB_SARADC_FSM_REG (0x18)

APB_S
ARADC_S

AM
PLE

_C
YCLE

2

31 24

(re
se

rve
d)

0 0

47 24

Reset

APB_SARADC_SAMPLE_CYCLE Sample cycles. (R/W)

Register 21.29: APB_SARADC_SAR1_PATT_TAB1_REG (0x1C)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR1_PATT_TAB1_REG Pattern tables 0 - 3 for SAR ADC1, one byte for each

pattern table: [31:28] pattern0_channel, [27:26] pattern0_bit_width, [25:24] pattern0_attenuation,

[23:20] pattern1_channel, etc. (R/W)

Espressif Systems 357 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 21.30: APB_SARADC_SAR1_PATT_TAB2_REG (0x20)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR1_PATT_TAB2_REG Pattern tables 4 - 7 for SAR ADC1, one byte for each

pattern table: [31:28] pattern4_channel, [27:26] pattern4_bit_width, [25:24] pattern4_attenuation,

[23:20] pattern5_channel, etc. (R/W)

Register 21.31: APB_SARADC_SAR1_PATT_TAB3_REG (0x24)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR1_PATT_TAB3_REG Pattern tables 8 - 11 for SAR ADC1, one byte for each

pattern table: [31:28] pattern8_channel, [27:26] pattern8_bit_width, [25:24] pattern8_attenuation,

[23:20] pattern9_channel, etc. (R/W)

Register 21.32: APB_SARADC_SAR1_PATT_TAB4_REG (0x28)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR1_PATT_TAB4_REG Pattern tables 12 - 15 for SAR ADC1, one byte for

each pattern table: [31:28] pattern12_channel, [27:26] pattern12_bit_width, [25:24] pat-

tern12_attenuation, [23:20] pattern13_channel, etc. (R/W)

Register 21.33: APB_SARADC_SAR2_PATT_TAB1_REG (0x2C)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR2_PATT_TAB1_REG Pattern tables 0 - 3 for SAR ADC2, one byte for each

pattern table: [31:28] pattern0_channel, [27:26] pattern0_bit_width, [25:24] pattern0_attenuation,

[23:20] pattern1_channel, etc. (R/W)

Register 21.34: APB_SARADC_SAR2_PATT_TAB2_REG (0x30)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR2_PATT_TAB2_REG Pattern tables 4 - 7 for SAR ADC2, one byte for each

pattern table: [31:28] pattern4_channel, [27:26] pattern4_bit_width, [25:24] pattern4_attenuation,

[23:20] pattern5_channel, etc. (R/W)

Espressif Systems 358 ESP32 Technical Reference Manual V1.8

21. ON-CHIP SENSORS AND ANALOG SIGNAL PROCESSING

Register 21.35: APB_SARADC_SAR2_PATT_TAB3_REG (0x34)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR2_PATT_TAB3_REG Pattern tables 8 - 11 for SAR ADC2, one byte for each

pattern table: [31:28] pattern8_channel, [27:26] pattern8_bit_width, [25:24] pattern8_attenuation,

[23:20] pattern9_channel, etc. (R/W)

Register 21.36: APB_SARADC_SAR2_PATT_TAB4_REG (0x38)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR2_PATT_TAB4_REG Pattern tables 12 - 15 for SAR ADC2, one byte for

each pattern table: [31:28] pattern12_channel, [27:26] pattern12_bit_width, [25:24] pat-

tern12_attenuation, [23:20] pattern13_channel, etc. (R/W)

21.9.3 RTC I/O

For details, please refer to Section Registers in Chapter IO_MUX and GPIO Matrix.

Espressif Systems 359 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

22. ULP Co-processor

22.1 Introduction

The ULP co-processor is an ultra-low-power processor that remains powered on during the Deep-sleep mode of

the main SoC. Hence, the developer can store in the RTC memory a program for the ULP co-processor to

access peripheral devices, internal sensors and RTC registers during deep sleep. This is useful for designing

applications where the CPU needs to be woken up by an external event, or timer, or a combination of these,

while maintaining minimal power consumption.

22.2 Features

• Contains up to 8 KB of SRAM for instructions and data

• Uses RTC_FAST_CLK, which is 8 MHz

• Works both in normal and deep sleep

• Is able to wake up the digital core or send an interrupt to the CPU

• Can access peripheral devices, internal sensors and RTC registers

• Contains four 16-bit general-purpose registers (R0, R1, R2, R3) for manipulating data and accessing

memory

• Includes one 8-bit Stage_cnt register which can be manipulated by ALU and used in JUMP instructions

RTC Memory

I2C CTRL

RTC CNTL REG

SAR CTRL

TSENS CTRL

ESP32 RTC

APB Bus

b
rid

ge

RTC IO REG

RTC I2C REG

SARADC REG

Arbiter

ULP
Coprocessor

RTC Timer

Figure 83: ULP Co-processor Diagram

Espressif Systems 360 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

22.3 Functional Description

The ULP co-processor is a programmable FSM (Finite State Machine) that can work during deep sleep. Like

general-purpose CPUs, ULP co-processor also has some instructions which can be useful for a relatively

complex logic, and also some special commands for RTC controllers/peripherals. The 8 KB of SRAM RTC slow

memory can be accessed by both the ULP co-processor and the CPU; hence, it is usually used to store

instructions and share data between the ULP co-processor and the CPU.

The ULP co-processor can be started by software or a periodically-triggered timer. The operation of the ULP

co-processor is ended by executing the HALT instruction. Meanwhile, it can access almost every module in RTC

domain, either through built-in instructions or RTC registers. In many cases the ULP co-processor can be a good

supplement to, or replacement of, the CPU, especially for power-sensitive applications. Figure 83 shows the

overall layout of a ULP co-processor.

22.4 Instruction Set

The ULP co-processor provides the following instructions:

• Perform arithmetic and logic operations - ALU

• Load and store data - LD, ST, REG_RD and REG_WR

• Jump to a certain address - JUMP

• Manage program execution - WAIT/HALT

• Control sleep period of ULP co-processor - SLEEP

• Wake up/communicate with SoC - WAKE

• Take measurements - TSENS and ADC

• Communicate using I2C - I2C_RD/I2C_WR

The ULP co-processor’s instruction format is shown in Figure 84.
0272831

OpCode Operands

Figure 84: The ULP Co-processor Instruction Format

An instruction, which has one OpCode, can perform various different operations, depending on the setting of

Operands bits. A good example is the ALU instruction, which is able to perform ten arithmetic and logic

operations; or the JUMP instruction, which may be conditional or unconditional, absolute or relative.

Each instruction has a fixed width of 32 bits. A series of instructions can make a program be executed by the

ULP co-processor. The execution flow inside the program uses 32-bit addressing. The program is stored in a

dedicated region called Slow Memory (RTC_SLOW_MEM), which is visible to the main CPUs as one that has an

address range of 0x5000_0000 to 0x5000_1FFF (8 KB).

Espressif Systems 361 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

22.4.1 ALU - Perform Arithmetic/Logic Operations

The ALU (Arithmetic and Logic Unit) performs arithmetic and logic operations on values stored in ULP

co-processor registers, and on immediate values stored in the instruction itself.

The following operations are supported:

• Arithmetic: ADD and SUB

• Logic: AND and OR

• Bit shifting: LSH and RSH

• Moving data to register: MOVE

• Stage count register manipulation: STAGE_RST, STAGE_INC and STAGE_DEC

The ALU instruction, which has one OpCode, can perform various different arithmetic and logic operations,

depending on the setting of the instruction’s bits [27:21] accordingly.

22.4.1.1 Operations among Registers

012345212425272831

3’d7 1’b0 ALU_sel Rsrc2Rsrc1 Rdst

Figure 85: Instruction Type — ALU for Operations among Registers

When bits [27:25] of the instruction in Figure 85 are set to 1’b0, ALU performs operations, using the ULP

co-processor register R[0-3]. The types of operations depend on the setting of the instruction’s bits [24:21]

presented in Table 91.

Operand Description - see Figure 85

ALU_sel Type of ALU operation

Rdst Register R[0-3], destination

Rsrc1 Register R[0-3], source

Rsrc2 Register R[0-3], source

ALU_sel Instruction Operation Description

0 ADD Rdst = Rsrc1 + Rsrc2 Add to register

1 SUB Rdst = Rsrc1 - Rsrc2 Subtract from register

2 AND Rdst = Rsrc1 & Rsrc2 Logical AND of two operands

3 OR Rdst = Rsrc1 | Rsrc2 Logical OR of two operands

4 MOVE Rdst = Rsrc1 Move to register

5 LSH Rdst = Rsrc1 <<�Rsrc2 Logical Shift Left

6 RSH Rdst = Rsrc1 >>�Rsrc2 Logical Shift Right

Table 91: ALU Operations among Registers

Note:

• ADD/SUB operations can be used to set/clear the overflow flag in ALU.

• All ALU operations can be used to set/clear the zero flag in ALU.

Espressif Systems 362 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

22.4.1.2 Operations with Immediate Value

0123419212425272831

3’d7 1’b1 ALU_sel Imm Rsrc1 Rdst

Figure 86: Instruction Type — ALU for Operations with Immediate Value

When bits [27:25] of the instruction in Figure 86 are set to 1’b1, ALU performs operations, using register R[0-3]

and the immediate value stored in [19:4]. The types of operations depend on the setting of the instruction’s bits

[24:21] presented in Table 92.

Operand Description - see Figure 86

ALU_sel Type of ALU operation

Rdst Register R[0-3], destination

Rsrc1 Register R[0-3], source

Imm 16-bit signed value

ALU_sel Instruction Operation Description

0 ADD Rdst = Rsrc1 + Imm Add to register

1 SUB Rdst = Rsrc1 - Imm Subtract from register

2 AND Rdst = Rsrc1 & Imm Logical AND of two operands

3 OR Rdst = Rsrc1 | Imm Logical OR of two operands

4 MOVE Rdst = Imm Move to register

5 LSH Rdst = Rsrc1 <<�Imm Logical Shift to the Left

6 RSH Rdst = Rsrc1 >>�Imm Logical Shift to the Right

Table 92: ALU Operations with Immediate Value

Note:

• ADD/SUB operations can be used to set/clear the overflow flag in ALU.

• All ALU operations can be used to set/clear the zero flag in ALU.

22.4.1.3 Operations with Stage Count Register

411212425272831

3’d7 1’b2 ALU_sel Imm

Figure 87: Instruction Type — ALU for Operations with Stage Count Register

ALU is also able to increment/decrement by a given value, or reset the 8-bit register Stage_cnt. To do so, bits

[27:25] of instruction in Figure 87 should be set to 1’b2. The type of operation depends on the setting of the

instruction’s bits [24:21] presented in Table 93. The Stage_cnt is a separate register and is not a part of the

instruction in Figure 87.

Operand Description - see Figure 87

ALU_sel Type of ALU operation

Stage_cnt Stage count register, a separate register [7:0] used to store variables, such as loop index

Imm 8-bit value

Espressif Systems 363 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

ALU_sel Instruction Operation Description

0 STAGE_INC Stage_cnt = Stage_cnt + Imm Increment stage count register

1 STAGE_DEC Stage_cnt = Stage_cnt - Imm Decrement stage count register

2 STAGE_RST Stage_cnt = 0 Reset stage count register

Table 93: ALU Operations with Stage Count Register

22.4.2 ST – Store Data in Memory
0123102025272831

3’d6 3’b100 4’b0 Offset 6’b0 Rsrc Rdst

Figure 88: Instruction Type — ST

Operand Description - see Figure 88

Offset 10-bit signed value, offset expressed in 32-bit words

Rsrc Register R[0-3], 16-bit value to store

Rdst Register R[0-3], address of the destination, expressed in 32-bit words

Description

The instruction stores the 16-bit value of Rsrc in the lower half-word of memory with address Rdst + Offset. The

upper half-word is written with the current program counter (PC) expressed in words and shifted to the left by 5

bits:

Mem [Rdst + Offset]{31:0} = {PC[10:0], 5’b0, Rsrc[15:0]}

The application can use the higher 16 bits to determine which instruction in the ULP program has written any

particular word into memory.

Note:

• This instruction can only access 32-bit memory words.

• Data from Rsrc is always stored in the lower 16 bits of a memory word. Differently put, it is not possible to

store Rsrc in the upper 16 bits of memory.

• The ”Mem” written is the RTC_SLOW_MEM memory. Address 0, as seen by the ULP co-processor,

corresponds to address 0x50000000, as seen by the main CPUs.

22.4.3 LD – Load Data from Memory
012310202831

3’d13 Offset Rsrc Rdst

Figure 89: Instruction Type — LD

Operand Description - see Figure 89

Offset 10-bit signed value, offset expressed in 32-bit words

Rsrc Register R[0-3], address of destination memory, expressed in 32-bit words

Rdst Register R[0-3], destination

Description

The instruction loads the lower 16-bit half-word from memory with address Rsrc + offset into the destination

register Rdst:

Espressif Systems 364 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

Rdst[15:0] = Mem[Rsrc + Offset][15:0]

Note:

• This instruction can only access 32-bit memory words.

• In any case, it is always the lower 16 bits of a memory word that are loaded. Differently put, it is not

possible to read the upper 16 bits.

• The ”Mem” loaded is the RTC_SLOW_MEM memory. Address 0, as seen by the ULP co-processor,

corresponds to address 0x50000000, as seen by the main CPUs.

22.4.4 JUMP – Jump to an Absolute Address
0121221222425272831

3’d8 1’b0 Type S
el ImmAddr Rdst

Figure 90: Instruction Type — JUMP

Operand Description - see Figure 90

Rdst Register R[0-3], address to jump to

ImmAddr 13-bit address, expressed in 32-bit words

Sel Selects the address to jump to:

0 - jump to the address contained in ImmAddr

1 - jump to the address contained in Rdst

Type Jump type:

0 - make an unconditional jump

1 - jump only if the last ALU operation has set the zero flag

2 - jump only if the last ALU operation has set the overflow flag

Description

The instruction prompts a jump to the specified address. The jump can be either unconditional or based on the

ALU flag.

Note:

All jump addresses are expressed in 32-bit words.

22.4.5 JUMPR – Jump to a Relative Offset (Conditional upon R0)
01516172425272831

3’d8 1’b1 Step

C
on

d

Threshold

Figure 91: Instruction Type — JUMPR

Operand Description - see Figure 91

Step Relative shift from current position, expressed in 32-bit words:

if Step[7] = 0 then PC = PC + Step[6:0]

if Step[7] = 1 then PC = PC - Step[6:0]

Threshold Threshold value for condition (see Cond below) to jump

Cond Condition to jump:

0 - jump if R0 < Threshold

1 - jump if R0 >= Threshold

Espressif Systems 365 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

Description

The instruction prompts a jump to a relative address, if the above-mentioned condition is true. The condition itself

is the result of comparing the R0 register value and the Threshold value.

Note:

All jump addresses are expressed in 32-bit words.

22.4.6 JUMPS – Jump to a Relative Address (Conditional upon Stage Count Regis-

ter)

071516172425272831

3’d8 1’b2 Step Cond Threshold

Figure 92: Instruction Type — JUMP

Operand Description - see Figure 92

Step Relative shift from current position, expressed in 32-bit words:

if Step[7] = 0, then PC = PC + Step[6:0]

if Step[7] = 1, then PC = PC - Step[6:0]

Threshold Threshold value for condition (see Cond below) to jump

Cond Condition of jump:

1X - jump if Stage_cnt == Threshold

00 - jump if Stage_cnt < Threshold

01 - jump if Stage_cnt > Threshold

Note:

• A description of how to set the stage count register is provided in section 22.4.1.3.

• All jump addresses are expressed in 32-bit words.

Description

The instruction prompts a jump to a relative address if the above-mentioned condition is true. The condition itself

is the result of comparing the value of Stage_cnt (stage count register) and the Threshold value.

22.4.7 HALT – End the Program

02831

3’d11

Figure 93: Instruction Type — HALT

Description

The instruction ends the operation of the processor and puts it into power-down mode.

Note:

After executing this instruction, the ULP co-processor timer gets started.

Espressif Systems 366 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

22.4.8 WAKE – Wake up the Chip
025272831

3’d9 1’b0 1’
b1

Figure 94: Instruction Type — WAKE

Description

This instruction sends an interrupt from the ULP co-processor to the RTC controller.

• If the SoC is in Deep-sleep mode, and the ULP wake-up is enabled, the above-mentioned interrupt will

wake up the SoC.

• If the SoC is not in Deep-sleep mode, and the ULP interrupt bit (RTC_CNTL_ULP_CP_INT_ENA) is set in

register RTC_CNTL_INT_ENA_REG, a RTC interrupt will be triggered.

22.4.9 Sleep – Set the ULP Timer’s Wake-up Period
0325272831

3’d9 1’b1 sleep_reg

Figure 95: Instruction Type — SLEEP

Operand Description - see Figure 95

sleep_reg Selects one of five SENS_ULP_CP_SLEEP_CYCn_REG (n: 0-4) as the wake-up period

of the ULP co-processor

Description

The instruction selects which one of the SENS_ULP_CP_SLEEP_CYCn_REG (n: 0-4) register values is to be

used by the ULP timer as the wake-up period. By default, the value of SENS_ULP_CP_SLEEP_CYC0_REG is

used.

22.4.10 WAIT – Wait for a Number of Cycles
0152831

3’d4 Cycles

Figure 96: Instruction Type — WAIT

Operand Description - see Figure 96

Cycles the number of cycles to wait between sleeps

Description

The instruction will delay the ULP co-processor from getting into sleep for a certain number of Cycles.

22.4.11 TSENS – Take Measurements with the Temperature Sensor
012152831

3’d10 Wait_Delay Rdst

Figure 97: Instruction Type — TSENS

Operand Description - see Figure 97

Rdst Destination Register R[0-3], results will be stored in this register.

Wait_Delay Number of cycles needed to obtain a measurement

Espressif Systems 367 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

Description

Longer Wait_Delay can improve the accuracy of measurement.

The instruction prompts a measurement to be taken with the use of the on-chip temperature sensor. The

measurement result is stored into a general-purpose register.

22.4.12 ADC – Take Measurement with ADC

012562831

3’d5 S
el Sar Mux Rdst

Figure 98: Instruction Type — ADC

Operand Description - see Figure 98

Rdst Destination Register R[0-3], results will be stored in this register.

Sel Selected ADC : 0 = SAR ADC1, 1 = SAR ADC2, see Table 94.

Sar Mux SARADC Pad [Sar_Mux - 1] is enabled, see Table 94.

Table 94: Input Signals Measured using the ADC Instruction

Pad Name/Signal/GPIO Sar_Mux Processed by /Sel

SENSOR_VP (GPIO36) 1

SAR ADC1/Sel = 0

SENSOR_CAPP (GPIO37) 2

SENSOR_CAPN (GPIO38) 3

SENSOR_VN (GPIO39) 4

32K_XP (GPIO33) 5

32K_XN (GPIO32) 6

VDET_1 (GPIO34) 7

VDET_2 (GPIO35) 8

Hall phase 1 9

Hall phase 0 10

GPIO4 1

SAR ADC2/Sel = 1

GPIO0 2

GPIO2 3

MTDO (GPIO15) 4

MTCK (GPIO13) 5

MTDI (GPIO12) 6

MTMS (GPIO14) 7

GPIO27 8

GPIO25 9

GPIO26 10

Description

The instruction prompts the taking of measurements with the use of ADC. Pads/signals available for ADC

measurement are provided in Table 94.

Espressif Systems 368 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

22.4.13 I2C_RD/I2C_WR – Read/Write I2C

07815161819212225272831

3’d3 R
/W I2C Sel High Low Data Sub-addr

Figure 99: Instruction Type — I2C

Operand Description - see Figure 99

Sub-addr Slave register address

Data Data to write in I2C_WR operation (not used in I2C_RD operation)

Low High part of bit mask

High Low part of bit mask

I2C Sel Select register n of SENS_I2C_SLAVE_ADDRn (n: 0-7), which contains the I2C slave address.

R/W I2C communication direction:

1 - I2C write

0 - I2C read

Description

Communicate (read/write) with external I2C slave devices. Details on using the RTC I2C peripheral are provided

in section 22.6.

Note:

When working in master mode, RTC_I2C samples the SDA input on the negative edge of SCL.

22.4.14 REG_RD – Read from Peripheral Register

09182223272831

3’d2 High Low Addr

Figure 100: Instruction Type — REG_RD

Operand Description - see Figure 100

Addr Register address, expressed in 32-bit words

High High part of R0

Low Low part of R0

Description

The instruction prompts a read of up to 16 bits from a peripheral register into a general-purpose register:

R0 = REG[Addr][High:Low]

In case of more than 16 bits being requested, i.e. High - Low + 1 > 16, then the instruction will return

[Low+15:Low].

Note:

• This instruction can access registers in RTC_CNTL, RTC_IO, SENS and RTC_I2C peripherals. The address

of the register, as seen from the ULP co-processor, can be calculated from the address of the same register

on the DPORT bus, as follows:

addr_ulp = (addr_dport - DR_REG_RTCCNTL_BASE)/4

Espressif Systems 369 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

• The addr_ulp is expressed in 32-bit words (not in bytes), and value 0 maps onto the

DR_REG_RTCCNTL_BASE (as seen from the main CPUs). Thus, 10 bits of address cover a 4096-byte

range of peripheral register space, including regions DR_REG_RTCCNTL_BASE, DR_REG_RTCIO_BASE,

DR_REG_SENS_BASE and DR_REG_RTC_I2C_BASE.

22.4.15 REG_WR – Write to Peripheral Register

091017182223272831

3’d2 High Low Data Addr

Figure 101: Instruction Type — REG_WR

Operand Description - see Figure 101

Addr Register address, expressed in 32-bit words

High High part of R0

Low Low part of R0

Data Value to write, 8 bits

Description

The instruction prompts the writing of up to 8 bits from a general-purpose register into a peripheral register.

REG[Addr][High:Low] = Data

If more than 8 bits are requested, i.e. High - Low + 1 > 8, then the instruction will pad with zeros the bits above

the eighth bit.

Note:

See notes regarding addr_ulp in section 22.4.14 above.

22.5 ULP Program Execution

The ULP co-processor is designed to operate independently of the main CPUs, while they are either in deep

sleep or running.

In a typical power-saving scenario, the ULP co-processor operates while the main CPUs are in deep sleep. To

save power even further, the ULP co-processor can get into sleep mode, as well. In such a scenario, there is a

specific hardware timer in place to wake up the ULP co-processor, since there is no software program running at

the same time. This timer should be configured in advance by setting and then selecting one of the

SENS_ULP_CP_SLEEP_CYCn_REG registers that contain the expiration period. This can be done either by the

main program, or the ULP program with the REG_WR and SLEEP instructions. Then, the ULP timer should be

enabled by setting bit RTC_CNTL_ULP_CP_SLP_TIMER_EN in the RTC_CNTL_STATE0_REG register.

The ULP co-processor puts itself into sleep mode by executing the HALT instruction. This also triggers the ULP

timer to start counting RTC_SLOW_CLK ticks which, by default, originate from an internal 150 kHz RC oscillator.

Once the timer expires, the ULP co-processor is powered up and runs a program with the program counter (PC)

which is stored in register SENS_PC_INIT. The relationship between the described signals and registers is shown

in Figure 102.

On reset or power-up the above-mentioned ULP program may start up only after the expiration of

SENS_ULP_CP_SLEEP_CYC0_REG, which is the default selection period of the ULP timer.

Espressif Systems 370 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

Figure 102: Control of ULP Program Execution

A sample operation sequence of the ULP program is shown in Figure 103, where the following steps are

executed:

1. Software enables the ULP timer by using bit RTC_CNTL_ULP_CP_SLP_TIMER_EN.

2. The ULP timer expires and the ULP co-processor starts running the program at PC = SENS_PC_INIT.

3. The ULP program executes the HALT instruction; the ULP co-processor is halted and the timer gets

restarted.

4. The ULP program executes the SLEEP instruction to change the sleep timer period register.

5. The ULP program, or software, disables the ULP timer by using bit RTC_CNTL_ULP_CP_SLP_TIMER_EN.

Espressif Systems 371 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

Figure 103: Sample of a ULP Operation Sequence

22.6 RTC_I2C Controller

The ULP co-processor can use a separate I2C controller, located in the RTC domain, to communicate with

external I2C slave devices. RTC_I2C has a limited feature set, compared to I2C0/I2C1 peripherals.

22.6.1 Configuring RTC_I2C

Before the ULP co-processor can use the I2C instruction, certain parameters of the RTC_I2C need to be

configured. This can be done by the program running on one of the main CPUs, or by the ULP co-processor

itself. Configuration is performed by writing certain timing parameters into the RTC_I2C registers:

1. Set the low and high SCL half-periods by using RTC_I2C_SCL_LOW_PERIOD_REG and

RTC_I2C_SCL_HIGH_PERIOD_REG in RTC_FAST_CLK cycles (e.g. RTC_I2C_SCL_LOW_PERIOD=40,

RTC_I2C_SCL_HIGH_PERIOD=40 for 100 kHz frequency).

2. Set the number of cycles between the SDA switch and the falling edge of SCL by using

RTC_I2C_SDA_DUTY_REG in RTC_FAST_CLK (e.g. RTC_I2C_SDA_DUTY=16).

3. Set the waiting time after the START condition by using RTC_I2C_SCL_START_PERIOD_REG (e.g.

RTC_I2C_SCL_START_PERIOD=30).

4. Set the waiting time before the END condition by using RTC_I2C_SCL_STOP_PERIOD_REG (e.g.

RTC_I2C_SCL_STOP_PERIOD=44).

5. Set the transaction timeout by using RTC_I2C_TIMEOUT_REG (e.g. RTC_I2C_TIMEOUT=200).

6. Enable the master mode (set the RTC_I2C_MS_MODE bit in RTC_I2C_CTRL_REG).

7. Write the address(es) of external slave(s) to SENS_I2C_SLAVE_ADDRn (n: 0-7). Up to eight slave

addresses can be pre-programmed this way. One of these addresses can then be selected for each

transaction as part of the ULP I2C instruction.

Once RTC_I2C is configured, instructions ULP I2C_RD and I2C_WR can be used.

22.6.2 Using RTC_I2C

The ULP co-processor supports two instructions (with a single OpCode) for using RTC_I2C: I2C_RD (read) and

I2C_WR (write).

Espressif Systems 372 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

22.6.2.1 I2C_RD - Read a Single Byte

The I2C_RD instruction performs the following I2C transaction (see Figure 104):

1. Master generates a START condition.

2. Master sends slave address, with r/w bit set to 0 (“write”). Slave address is obtained from

SENS_I2C_SLAVE_ADDRn, where n is given as an argument to the I2C_RD instruction.

3. Slave generates ACK.

4. Master sends slave register address (given as an argument to the I2C_RD instruction).

5. Slave generates ACK.

6. Master generates a repeated START condition.

7. Master sends slave address, with r/w bit set to 1 (“read”).

8. Slave sends one byte of data.

9. Master generates NACK.

10. Master generates a STOP condition.

1 2 3 4 5 6 7 8 9 10

Master

S
TA

R
T

Slave Address W Reg Address

R
S

TR
T

Slave Address R

N
A

C
K

S
TO

P

Slave A
C

K

A
C

K Data

Figure 104: I2C Read Operation

Note:

The RTC_I2C peripheral samples the SDA signals on the falling edge of SCL. If the slave changes SDA in less

than 0.38 microseconds, the master will receive incorrect data.

The byte received from the slave is stored into the R0 register.

22.6.2.2 I2C_WR - Write a Single Byte

The I2C_WR instruction performs the following I2C transaction (see Figure 105):

1. Master generates a START condition.

2. Master sends slave address, with r/w bit set to 0 (“write”). Slave address is obtained from

SENS_I2C_SLAVE_ADDRn, where n is given as an argument to the I2C_WR instruction.

3. Slave generates ACK.

4. Master sends slave register address (given as an argument to the I2C_WR instruction).

5. Slave generates ACK.

6. Master generates a repeated START condition.

7. Master sends slave address, with r/w bit set to 0 (“write”).

8. Master sends one byte of data.

9. Slave generates ACK.

Espressif Systems 373 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

10. Master generates a STOP condition.

1 2 3 4 5 6 7 8 9 10

Master

S
TA

R
T

Slave Address W Reg Address

R
S

TR
T

Slave Address W Data S
TO

P

Slave A
C

K

A
C

K

A
C

K

Figure 105: I2C Write Operation

22.6.2.3 Detecting Error Conditions

ULP I2C_RD and I2C_WR instructions will not report error conditions, such as a NACK from a slave, via ULP

registers. Instead, applications can query specific bits in the RTC_I2C_INT_ST_REG register to determine if the

transaction was successful. To enable checking for specific communication events, their corresponding bits

should be set in register RTC_I2C_INT_EN_REG. Note that the bit map is shifted by 1. If a specific

communication event is detected and set in register RTC_I2C_INT_ST_REG, it can then be cleared using

RTC_I2C_INT_CLR_REG.

22.6.2.4 Connecting I2C Signals

SDA and SCL signals can be mapped onto two out of the four GPIO pins, which are identified in the ESP32 pin

lists in ESP32 Datasheet, using the RTCIO_SAR_I2C_IO_REG register.

22.7 Register Summary

22.7.1 SENS_ULP Address Space

Name Description Address Access

ULP Timer cycles select

SENS_ULP_CP_SLEEP_CYC0_REG Timer cycles setting 0 0x3FF48818 R/W

SENS_ULP_CP_SLEEP_CYC1_REG Timer cycles setting 1 0x3FF4881C R/W

SENS_ULP_CP_SLEEP_CYC2_REG Timer cycles setting 2 0x3FF48820 R/W

SENS_ULP_CP_SLEEP_CYC3_REG Timer cycles setting 3 0x3FF48824 R/W

SENS_ULP_CP_SLEEP_CYC4_REG Timer cycles setting 4 0x3FF48828 R/W

RTC I2C slave address select

SENS_SAR_SLAVE_ADDR1_REG I2C addresses 0 and 1 0x3FF4883C R/W

SENS_SAR_SLAVE_ADDR2_REG I2C addresses 2 and 4 0x3FF48840 R/W

SENS_SAR_SLAVE_ADDR3_REG I2C addresses 4 and 5 0x3FF48844 R/W

SENS_SAR_SLAVE_ADDR4_REG I2C addresses 6 and 7, I2C control 0x3FF48848 R/W

RTC I2C control

SENS_SAR_I2C_CTRL_REG I2C control registers 0x3FF48850 R/W

22.7.2 RTC_I2C Address Space

Name Description Address Access

RTC I2C control registers

Espressif Systems 374 ESP32 Technical Reference Manual V1.8

http://espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

22. ULP CO-PROCESSOR

RTC_I2C_CTRL_REG Transmission setting 0x3FF48C04 R/W

RTC_I2C_DEBUG_STATUS_REG Debug status 0x3FF48C08 R/W

RTC_I2C_TIMEOUT_REG Timeout setting 0x3FF48C0C R/W

RTC_I2C_SLAVE_ADDR_REG Local slave address setting 0x3FF48C10 R/W

RTC I2C signal setting registers

RTC_I2C_SDA_DUTY_REG
Configures the SDA hold time after a nega-

tive SCL edge

0x3FF48C30 R/W

RTC_I2C_SCL_LOW_PERIOD_REG Configures the low level width of SCL 0x3FF48C00 R/W

RTC_I2C_SCL_HIGH_PERIOD_REG Configures the high level width of SCL 0x3FF48C38 R/W

RTC_I2C_SCL_START_PERIOD_REG
Configures the delay between the SDA and

SCL negative edge for a start condition

0x3FF48C40 R/W

RTC_I2C_SCL_STOP_PERIOD_REG
Configures the delay between the SDA and

SCL positive edge for a stop condition

0x3FF48C44 R/W

RTC I2C interrupt registers - listed only for debugging

RTC_I2C_INT_CLR_REG Clear status of I2C communication events 0x3FF48C24 R/W

RTC_I2C_INT_EN_REG
Enable capture of I2C communication sta-

tus events

0x3FF48C28 R/W

RTC_I2C_INT_ST_REG
Status of captured I2C communication

events

0x3FF48C2C R/O

Note:

Interrupts from RTC_I2C are not connected. The interrupt registers above are listed only for debugging

purposes.

Espressif Systems 375 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

22.8 Registers

22.8.1 SENS_ULP Address Space

Register 22.1: SENS_ULP_CP_SLEEP_CYCn_REG (n: 0-4) (0x18+0x4*n)

20

31 0

Reset

SENS_ULP_CP_SLEEP_CYCn_REG ULP timer cycles setting n; the ULP co-processor can select

one of such registers by using the SLEEP instruction. (R/W)

Register 22.2: SENS_SAR_START_FORCE_REG (0x002c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

SENS_P
C_IN

IT

0 0 0 0 0 0 0 0 0 0 0

21 11

(re
se

rve
d)

0

10

SENS_U
LP

_C
P_S

TA
RT_

TO
P

0

9

SENS_U
LP

_C
P_F

ORCE_S
TA

RT_
TO

P

0

8

(re
se

rve
d)

0 0 0 0 0 0 0 0

15 8

Reset

SENS_PC_INIT ULP PC entry address. (R/W)

SENS_ULP_CP_START_TOP Set this bit to start the ULP co-processor; it is active only when

SENS_ULP_CP_FORCE_START_TOP = 1. (R/W)

SENS_ULP_CP_FORCE_START_TOP 1: ULP co-processor is started by

SENS_ULP_CP_START_TOP; 0: ULP co-processor is started by timer. (R/W)

Register 22.3: SENS_SAR_SLAVE_ADDR1_REG (0x003c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

SENS_I2
C_S

LA
VE_A

DDR0

0x000

21 11

SENS_I2
C_S

LA
VE_A

DDR1

0x000

10 0

Reset

SENS_I2C_SLAVE_ADDR0 I2C slave address 0. (R/W)

SENS_I2C_SLAVE_ADDR1 I2C slave address 1. (R/W)

Espressif Systems 376 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

Register 22.4: SENS_SAR_SLAVE_ADDR2_REG (0x0040)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

SENS_I2
C_S

LA
VE_A

DDR2

0x000

21 11

SENS_I2
C_S

LA
VE_A

DDR3

0x000

10 0

Reset

SENS_I2C_SLAVE_ADDR2 I2C slave address 2. (R/W)

SENS_I2C_SLAVE_ADDR3 I2C slave address 3. (R/W)

Register 22.5: SENS_SAR_SLAVE_ADDR3_REG (0x0044)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

SENS_I2
C_S

LA
VE_A

DDR4

0x000

21 11

SENS_I2
C_S

LA
VE_A

DDR5

0x000

10 0

Reset

SENS_I2C_SLAVE_ADDR4 I2C slave address 4. (R/W)

SENS_I2C_SLAVE_ADDR5 I2C slave address 5. (R/W)

Register 22.6: SENS_SAR_SLAVE_ADDR4_REG (0x0048)

(re
se

rve
d)

0

31

SENS_I2
C_D

ONE

0

30

SENS_I2
C_R

DAT
A

0x000

29 22

SENS_I2
C_S

LA
VE_A

DDR6

0x000

21 11

SENS_I2
C_S

LA
VE_A

DDR7

0x000

10 0

Reset

SENS_I2C_DONE Indicate I2C done. (RO)

SENS_I2C_RDATA I2C read data. (RO)

SENS_I2C_SLAVE_ADDR6 I2C slave address 6. (R/W)

SENS_I2C_SLAVE_ADDR7 I2C slave address 7. (R/W)

Espressif Systems 377 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

Register 22.7: SENS_SAR_I2C_CTRL_REG (0x0050)

(re
se

rve
d)

0 0

31 30

SENS_S
AR_I2

C_S
TA

RT_
FO

RCE

0

29

SENS_S
AR_I2

C_S
TA

RT

0

28

SENS_S
AR_I2

C_C
TR

L

0 0

27 0

Reset

SENS_SAR_I2C_START_FORCE 1: I2C started by SW, 0: I2C started by FSM. (R/W)

SENS_SAR_I2C_START Start I2C; active only when SENS_SAR_I2C_START_FORCE = 1. (R/W)

SENS_SAR_I2C_CTRL I2C control data; active only when SENS_SAR_I2C_START_FORCE = 1.

(R/W)

22.8.2 RTC_I2C Address Space

Register 22.8: RTC_I2C_SCL_LOW_PERIOD_REG (0x000)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

RTC
_I2

C_S
CL_

LO
W

_P
ERIO

D

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0

Reset

RTC_I2C_SCL_LOW_PERIOD Number of FAST_CLK cycles when SCL == 0. (R/W)

Espressif Systems 378 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

Register 22.9: RTC_I2C_CTRL_REG (0x004)

(re
se

rve
d)

0 0

31 8

RTC
_I2

C_R
X_

LS
B_F

IR
ST

0

7

RTC
_I2

C_T
X_

LS
B_F

IR
ST

0

6

RTC
_I2

C_T
RANS_S

TA
RT

0

5

RTC
_I2

C_M
S_M

ODE

0

4

(re
se

rve
d)

0 0

3 2

RTC
_I2

C_S
CL_

FO
RCE_O

UT

0

1

RTC
_I2

C_S
DA_F

ORCE_O
UT

0

0

Reset

RTC_I2C_RX_LSB_FIRST Send LSB first. (R/W)

RTC_I2C_TX_LSB_FIRST Receive LSB first. (R/W)

RTC_I2C_TRANS_START Force to generate a start condition. (R/W)

RTC_I2C_MS_MODE Master (1), or slave (0). (R/W)

RTC_I2C_SCL_FORCE_OUT SCL is push-pull (1) or open-drain (0). (R/W)

RTC_I2C_SDA_FORCE_OUT SDA is push-pull (1) or open-drain (0). (R/W)

Register 22.10: RTC_I2C_DEBUG_STATUS_REG (0x008)

(re
se

rve
d)

0

31

RTC
_I2

C_S
CL_

STA
TE

0 0 0

30 28

RTC
_I2

C_M
AIN

_S
TA

TE

0 0 0

27 25

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 7

RTC
_I2

C_B
YTE

_T
RANS

0

6

RTC
_I2

C_S
LA

VE_A
DDR_M

AT
CH

0

5

RTC
_I2

C_B
US_B

USY

0

4

RTC
_I2

C_A
RB_L

OST

0

3

RTC
_I2

C_T
IM

ED_O
UT

0

2

RTC
_I2

C_S
LA

VE_R
W

0

1

RTC
_I2

C_A
CK_V

AL

0

0

Reset

RTC_I2C_SCL_STATE State of SCL machine. (R/W)

RTC_I2C_MAIN_STATE State of the main machine. (R/W)

RTC_I2C_BYTE_TRANS 8-bit transmit done. (R/W)

RTC_I2C_SLAVE_ADDR_MATCH Indicates whether the addresses are matched, when in slave

mode. (R/W)

RTC_I2C_BUS_BUSY Operation is in progress. (R/W)

RTC_I2C_ARB_LOST Indicates the loss of I2C bus control, when in master mode. (R/W)

RTC_I2C_TIMED_OUT Transfer has timed out. (R/W)

RTC_I2C_SLAVE_RW Indicates the value of the received R/W bit, when in slave mode. (R/W)

RTC_I2C_ACK_VAL The value of ACK signal on the bus. (R/W)

Espressif Systems 379 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

Register 22.11: RTC_I2C_TIMEOUT_REG (0x00c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

RTC
_I2

C_T
IM

EOUT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

RTC_I2C_TIMEOUT Maximum number of FAST_CLK cycles that the transmission can take. (R/W)

Register 22.12: RTC_I2C_SLAVE_ADDR_REG (0x010)

RTC
_I2

C_S
LA

VE_A
DDR_1

0B
IT

0

31

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 15

RTC
_I2

C_S
LA

VE_A
DDR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0

Reset

RTC_I2C_SLAVE_ADDR_10BIT Set if local slave address is 10-bit. (R/W)

RTC_I2C_SLAVE_ADDR Local slave address. (R/W)

Espressif Systems 380 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

Register 22.13: RTC_I2C_INT_CLR_REG (0x024)

(re
se

rve
d)

0 0

31 9

RTC
_I2

C_T
IM

E_O
UT_

IN
T_

CLR

0

8

RTC
_I2

C_T
RANS_C

OM
PLE

TE
_IN

T_
CLR

0

7

RTC
_I2

C_M
ASTE

R_T
RANS_C

OM
PLE

TE
_IN

T_
CLR

0

6

RTC
_I2

C_A
RBITR

AT
IO

N_L
OST_

IN
T_

CLR

0

5

RTC
_I2

C_S
LA

VE_T
RANS_C

OM
PLE

TE
_IN

T_
CLR

0

4

(re
se

rve
d)

0 0 0 0

7 4

Reset

RTC_I2C_TIME_OUT_INT_CLR Clear interrupt upon timeout. (R/W)

RTC_I2C_TRANS_COMPLETE_INT_CLR Clear interrupt upon detecting a stop pattern. (R/W)

RTC_I2C_MASTER_TRANS_COMPLETE_INT_CLR Clear interrupt upon completion of transaction,

when in master mode. (R/W)

RTC_I2C_ARBITRATION_LOST_INT_CLR Clear interrupt upon losing control of the bus, when in

master mode. (R/W)

RTC_I2C_SLAVE_TRANS_COMPLETE_INT_CLR Clear interrupt upon completion of transaction,

when in slave mode. (R/W)

Espressif Systems 381 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

Register 22.14: RTC_I2C_INT_EN_REG (0x028)

(re
se

rve
d)

0 0

31 9

RTC
_I2

C_T
IM

E_O
UT_

IN
T_

ENA

0

8

RTC
_I2

C_T
RANS_C

OM
PLE

TE
_IN

T_
ENA

0

7

RTC
_I2

C_M
ASTE

R_T
RAN_C

OM
P_IN

T_
ENA

0

6

RTC
_I2

C_A
RBITR

AT
IO

N_L
OST_

IN
T_

ENA

0

5

RTC
_I2

C_S
LA

VE_T
RAN_C

OM
P_IN

T_
ENA

0

4

(re
se

rve
d)

0 0 0 0

7 4

Reset

RTC_I2C_TIME_OUT_INT_ENA Enable interrupt upon timeout. (R/W)

RTC_I2C_TRANS_COMPLETE_INT_ENA Enable interrupt upon detecting a stop pattern. (R/W)

RTC_I2C_MASTER_TRAN_COMP_INT_ENA Enable interrupt upon completion of transaction,

when in master mode. (R/W)

RTC_I2C_ARBITRATION_LOST_INT_ENA Enable interrupt upon losing control of the bus, when in

master mode. (R/W)

RTC_I2C_SLAVE_TRAN_COMP_INT_ENA Enable interrupt upon completion of transaction, when

in slave mode. (R/W)

Register 22.15: RTC_I2C_INT_ST_REG (0x02c)

(re
se

rve
d)

0 0

31 8

RTC
_I2

C_T
IM

E_O
UT_

IN
T_

ST

0

7

RTC
_I2

C_T
RANS_C

OM
PLE

TE
_IN

T_
ST

0

6

RTC
_I2

C_M
ASTE

R_T
RAN_C

OM
P_IN

T_
ST

0

5

RTC
_I2

C_A
RBITR

AT
IO

N_L
OST_

IN
T_

ST

0

4

RTC
_I2

C_S
LA

VE_T
RAN_C

OM
P_IN

T_
ST

0

3

(re
se

rve
d)

0 0 0

5 3

Reset

RTC_I2C_TIME_OUT_INT_ST Detected timeout. (R/O)

RTC_I2C_TRANS_COMPLETE_INT_ST Detected stop pattern on I2C bus. (R/O)

RTC_I2C_MASTER_TRAN_COMP_INT_ST Transaction completed, when in master mode. (R/O)

RTC_I2C_ARBITRATION_LOST_INT_ST Bus control lost, when in master mode. (R/O)

RTC_I2C_SLAVE_TRAN_COMP_INT_ST Transaction completed, when in slave mode. (R/O)

Espressif Systems 382 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

Register 22.16: RTC_I2C_SDA_DUTY_REG (0x030)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

RTC
_I2

C_S
DA_D

UTY

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

RTC_I2C_SDA_DUTY Number of FAST_CLK cycles between the SDA switch and the falling edge of

SCL. (R/W)

Register 22.17: RTC_I2C_SCL_HIGH_PERIOD_REG (0x038)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

RTC
_I2

C_S
CL_

HIG
H_P

ERIO
D

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

RTC_I2C_SCL_HIGH_PERIOD Number of FAST_CLK cycles when SCL == 1. (R/W)

Register 22.18: RTC_I2C_SCL_START_PERIOD_REG (0x040)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

RTC
_I2

C_S
CL_

STA
RT_

PERIO
D

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

RTC_I2C_SCL_START_PERIOD Number of FAST_CLK cycles to wait before generating a start con-

dition. (R/W)

Espressif Systems 383 ESP32 Technical Reference Manual V1.8

22. ULP CO-PROCESSOR

Register 22.19: RTC_I2C_SCL_STOP_PERIOD_REG (0x044)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

RTC
_I2

C_S
CL_

STO
P_P

ERIO
D

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

RTC_I2C_SCL_STOP_PERIOD Number of FAST_CLK cycles to wait before generating a stop con-

dition. (R/W)

Espressif Systems 384 ESP32 Technical Reference Manual V1.8

	System and Memory
	Introduction
	Features
	Functional Description
	Address Mapping
	Embedded Memory
	External Memory
	Peripherals

	Interrupt Matrix
	Introduction
	Features
	Functional Description
	Peripheral Interrupt Source
	CPU Interrupt
	Allocate Peripheral Interrupt Sources to Peripheral Interrupt on CPU
	CPU NMI Interrupt Mask
	Query Current Interrupt Status of Peripheral Interrupt Source

	Reset and Clock
	System Reset
	Introduction
	Reset Source

	System Clock
	Introduction
	Clock Source
	CPU Clock
	Peripheral Clock
	Wi-Fi BT Clock
	RTC Clock
	Audio PLL

	IO_MUX and GPIO Matrix
	Introduction
	Peripheral Input via GPIO Matrix
	Summary
	Functional Description
	Simple GPIO Input

	Peripheral Output via GPIO Matrix
	Summary
	Functional Description
	Simple GPIO Output

	Direct I/O via IO_MUX
	Summary
	Functional Description

	RTC IO_MUX for Low Power and Analog I/O
	Summary
	Functional Description

	Light-sleep Mode Pin Functions
	Pad Hold Feature
	I/O Pad Power Supply
	VDD_SDIO Power Domain

	Peripheral Signal List
	IO_MUX Pad List
	RTC_MUX Pin List
	Register Summary
	Registers

	SPI
	Overview
	SPI Features
	GP-SPI
	GP-SPI Master Mode
	GP-SPI Slave Mode
	GP-SPI Data Buffer

	GP-SPI Clock Control
	GP-SPI Clock Polarity (CPOL) and Clock Phase (CPHA)
	GP-SPI Timing

	Parallel QSPI
	Communication Format of Parallel QSPI

	GP-SPI Interrupt Hardware
	SPI Interrupts
	DMA Interrupts

	Register Summary
	Registers

	SD/MMC Host Controller
	Overview
	Features
	SD/MMC External Interface Signals
	Functional Description
	SD/MMC Host Controller Architecture
	Command Path
	Data Path

	Software Restrictions for Proper CIU Operation
	RAM for Receiving and Sending Data
	Transmit RAM Module
	Receive RAM Module

	Descriptor Chain
	The Structure of a Linked List
	Initialization
	DMAC Initialization
	DMAC Transmission Initialization
	DMAC Reception Initialization

	Interrupt
	Register Summary
	Registers

	I2C Controller
	Overview
	Features
	Functional Description
	Introduction
	Architecture
	I2C Bus Timing
	I2C cmd Structure
	I2C Master Writes to Slave
	I2C Master Reads from Slave
	Interrupts

	Register Summary
	Registers

	I2S
	Overview
	Features
	The Clock of I2S Module
	I2S Mode
	Supported Audio Standards
	Module Reset
	FIFO Operation
	Sending Data
	Receiving Data
	I2S Master/Slave Mode
	I2S PDM

	LCD Mode
	LCD Master Transmitting Mode
	Camera Slave Receiving Mode
	ADC/DAC mode

	I2S Interrupts
	FIFO Interrupts
	DMA Interrupts

	Register Summary
	Registers

	UART Controllers
	Overview
	UART Features
	Functional Description
	Introduction
	UART Architecture
	UART RAM
	Baud Rate Detection
	UART Data Frame
	Flow Control
	UART DMA
	UART Interrupts
	UCHI Interrupts

	Register Summary
	Registers

	LED_PWM
	Introduction
	Functional Description
	Architecture
	Timers
	Channels
	Interrupts

	Register Summary
	Registers

	Remote Controller Peripheral
	Introduction
	Functional Description
	RMT Architecture
	RMT RAM
	Clock
	Transmitter
	Receiver
	Interrupts

	Register Summary
	Registers

	PULSE_CNT
	Introduction
	Functional Description
	Architecture
	Counter Channel Inputs
	Watchpoints
	Examples
	Interrupts

	Register Summary
	Registers

	64-bit Timers
	Introduction
	Functional Description
	16-bit Prescaler
	64-bit Time-base Counter
	Alarm Generation
	MWDT
	Interrupts

	Register Summary
	Registers

	Watchdog Timers
	Introduction
	Features
	Functional Description
	Clock

	eFuse Controller
	Introduction
	Features
	Functional Description
	Structure
	Programming of System Parameters
	Software Reading of System Parameters
	The Use of System Parameters by Hardware Modules
	Interrupts

	Register Summary
	Registers

	AES Accelerator
	Introduction
	Features
	Functional Description
	AES Algorithm Operations
	Key, Plaintext and Ciphertext
	Endianness
	Encryption and Decryption Operations
	Speed

	Register Summary
	Registers

	SHA Accelerator
	Introduction
	Features
	Functional Description
	Padding and Parsing the Message
	Message Digest
	Hash Operation
	Speed

	Register Summary
	Registers

	RSA Accelerator
	Introduction
	Features
	Functional Description
	Initialization
	Large Number Modular Exponentiation
	Large Number Modular Multiplication
	Large Number Multiplication

	Register Summary
	Registers

	Random Number Generator
	Introduction
	Feature
	Functional Description
	Register Summary
	Register

	PID/MPU/MMU
	Introduction
	Features
	Functional Description
	PID Controller
	MPU/MMU

	On-Chip Sensors and Analog Signal Processing
	Introduction
	Capacitive Touch Sensor
	Introduction
	Features
	Available GPIOs
	Functional Description
	Touch FSM

	SAR ADC
	Introduction
	Features
	Outline of Function
	RTC SAR ADC Controllers
	DIG SAR ADC Controllers

	Low-Noise Amplifier
	Introduction
	Features
	Overview of Function

	Hall Sensor
	Introduction
	Features
	Functional Description

	Temperature Sensor
	Introduction
	Features
	Functional Description

	DAC
	Introduction
	Features
	Structure
	Cosine Waveform Generator
	DMA support

	Register Summary
	Sensors
	Advanced Peripheral Bus
	RTC I/O

	Registers
	Sensors
	Advanced Peripheral Bus
	RTC I/O

	ULP Co-processor
	Introduction
	Features
	Functional Description
	Instruction Set
	ALU - Perform Arithmetic/Logic Operations
	ST – Store Data in Memory
	LD – Load Data from Memory
	JUMP – Jump to an Absolute Address
	JUMPR – Jump to a Relative Offset (Conditional upon R0)
	JUMPS – Jump to a Relative Address (Conditional upon Stage Count Register)
	HALT – End the Program
	WAKE – Wake up the Chip
	Sleep – Set the ULP Timer's Wake-up Period
	WAIT – Wait for a Number of Cycles
	TSENS – Take Measurements with the Temperature Sensor
	ADC – Take Measurement with ADC
	I2C_RD/I2C_WR – Read/Write I2C
	REG_RD – Read from Peripheral Register
	REG_WR – Write to Peripheral Register

	ULP Program Execution
	RTC_I2C Controller
	Configuring RTC_I2C
	Using RTC_I2C

	Register Summary
	SENS_ULP Address Space
	RTC_I2C Address Space

	Registers
	SENS_ULP Address Space
	RTC_I2C Address Space

