
CMSC 675 Neural Networks, Project 1

Charles Lohr

October 19, 2009

Introduction

I chose to implement Project 1 using C++ and making my generic nodes into
C++ Classes. I titled each node as being a ”Node.” I decided to provide it with
the following publicly accessible members:

• std::vector<Node *> Inputs; A mapping of all of the nodes this one takes
input from. Think of this as this node’s synapse list.

• std::vector<float> InputWeights; A listing of the weight applied to each
node, note this is one bigger than Inputs, since the first value is the bias.

• std::vector<vector Node *> Outputs; A mapping of all the nodes that
take input from this node.

• float Output; The output value from this node, as determined by Function.

• float Delta; The derivative value from this node, as determined by Function.

• float LastSum; The value that is the unadulterated sum of all the nodes,
times their inputs. This is passed into Function.

• bool Fixed; If set, the node’s Output value will not be changed. You can
set it’s Output value to be whatever you chose. This mimics the input
layer of an ANN.

• void (*Function)(float x, float & val, float & derivative); The function
pointer to the function that could be linear or sigmoid.

I also decided to implement it with the following functions:

• constructor: Node(void (*fn)(float input, float & val, float & derivative
)); It requires the type of function that it is to simulate, i.e. Linear, or
Sigmoid.

• AttachOutput(Node * n); Attaches node n to this node’s input. It
then informs the other node of the recriprocal.

• CalculateOutputs(); Calculate this node’s outputs from its inputs.

1

• Backprop(float wrongness, float training = 0.05); Use back propagation
to help train the network. This is recursive.

In each example my network is constructed in a different way. In both
examples, the networks are two-layer. They topographically can be easily ma-
nipulated in the main portion of whatever program is being run. The sigmoid
function I use in all cases was tanh(x) = (1-e−x)/(1+ex). I chose to randomly
assign the initial weights between -1 and 1. I did not take any variations on
BP learning, since I had plenty of computing time and I did each test did not
exceed 2.5 seconds. The output stages were always linear, the hidden stages
were always sigmoid.

Classification

For the classification problem, I modified my network to contain two input
nodes, the first the X location, the second, the Y. This feeds into a first hidden
layer with seven nodes. Then, it feeds into a second hidden layer with two
nodes. All of the nodes in my network (Except for the output nodes) use a
sigmoid. I chose to use a linear output for my output so I could closely observe
what was going on.

My results were fairly poor, while my network coincidentally produced good
output the first time, and has very high training accuracy... The test accuracy is
lucky at best. The following network was trained in 500 epochs with a learning
rate of 0.02; For reference, the seed used was 93.

Coordinate Actual Network Output Expected Network Output
0.70,0.70 -1.00 -1.00
1.10,1.10 1.00 1.00
0.50,-0.50 -0.99 -1.00
0.90,-0.90 1.00 1.00
-0.40,0.40 -1.00 -1.00
-1.20,1.20 1.00 1.00
-0.30,-0.30 -1.01 -1.00
-1.50,-1.50 1.00 1.00
0.80,0.00 -1.25 -1.00
0.10,-0.70 -0.71 -1.00
-1.00,0.30 0.17 1.00
1.50,1.00 1.60 1.00

MSE (Actual) 29.823%
MSE (Learning) 0.004%

Many other seeds produced data that in fact crossed the threshold and pro-
duced the incorrect data altogether. This leads me to believe the correct answers
are more on luck - in particular the third answer. None of my neural network
setups were able to definitively describe where the third element should go.

2

I believe a major problem with this isn’t so much overlearning as much as it
is overgeneralization. My neural net could not learn to be as general as it was
being asked to be.

The code to generate this output is found in classification.cpp.

Function Approximation

For the second portion of the project, I decided to use a slightly larger neural
network. I found that while my neural network could approximate sign with
fewer function, using a network with nine first-hidden-layer nodes and two
second-hidden-layer nodes could quickly learn how to approximate sin very
quickly. My learning rate was 0.04, I performed 30,000 epochs. It took only
two seconds to program my entire network. For reference purposes, it uses a
random seed of 95.

Input Actual Network Output Expected Network Output
0.31 0.33 0.31
1.63 1.00 1.00
2.98 0.15 0.16
3.46 -0.31 -0.31
5.03 -0.96 -0.95

MSE (Actual) 0.008%
MSE (Learning) 0.001%

You can see below a graph of the actual output.

Test Plot

0.00

1.00

-0.96

0.31 5.03

I think a large problem with this network as well was it’s overtraining. When
I decided to see how close it could get with the range of inputs over the interval
of 2π, it got still performed well. The MSE was 0.006% even with only a few
training points.

3

Test Plot1.00

0.00

0.000.000.00

1.00

-1.00

0.00 6.28

When I trained the same network using points randomly assigned to the
number line, with 300,000 samples, strangely enough the MSE actually in-
creased. The MSE was 0.011%. The graph is below.

Test Plot

-1.00

0.00

0.000.000.00

1.00

-1.00

0.00 6.28

The output of the first part of this program was generated by sin.cpp.

4

